Elastoplastic constitutive model for biocemented sands
CUI Hao1, XIAO Yang1,2,3, SUN Zeng-chun1, WANG Cheng-gui1, LIANG Fang1, LIU Han-long1,2,3
1. School of Civil Engineering, Chongqing University, Chongqing 400045, China; 2. Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University, Chongqing 400045, China; 3. National Joint Engineering Research Center of Geohazards Prevention in the Reservoir Areas, Chongqing 400045, China
Abstract:The microbial-induced calcite precipitation (MICP) is a new method for reinforcing geotechnical materials with environmentally friendly bacteria. The test results show that the stiffness, strength and dilatancy of the MICP-treated sands are enhanced, while the compressibility is reduced. In view of the mechanical properties and deformation characteristics of the MICP-treated sands, a state-dependent elastoplastic constitutive model for the MICP-treated sands with non-associated flow rule is established in the framework of critical state soil mechanics theory. In the new cementation degradation rule, the cementation degradation rate is related to the accumulation of plastic strain and the confining pressure. Then, the drained triaxial tests on the MICP-treated sands are simulated by the proposed model. The results show that the proposed model can well simulate the stress-strain relationship and dilatancy behavior.
崔昊, 肖杨, 孙增春, 汪成贵, 梁放, 刘汉龙. 微生物加固砂土弹塑性本构模型[J]. 岩土工程学报, 2022, 44(3): 474-482.
CUI Hao, XIAO Yang, SUN Zeng-chun, WANG Cheng-gui, LIANG Fang, LIU Han-long. Elastoplastic constitutive model for biocemented sands. Chinese J. Geot. Eng., 2022, 44(3): 474-482.
[1] 何稼, 楚剑, 刘汉龙, 等. 微生物岩土技术的研究进展[J]. 岩土工程学报, 2016, 38(4): 643-653. (HE Jia, CHU Jian, LIU Han-long, et al.Research advances in biogeotechnologies[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 643-653. (in Chinese)) [2] 刘汉龙, 肖鹏, 肖杨, 等. 微生物岩土技术及其应用研究新进展[J]. 土木与环境工程学报, 2019, 41(1): 1-14. (LIU Han-long, XIAO Peng, XIAO Yang, et al.State-of- the-art review of biogeotechnology and its engineering applications[J]. Journal of Civil and Environmental Engineering, 2019, 41(1): 1-14. (in Chinese)) [3] 程晓辉, 麻强, 杨钻, 等. 微生物灌浆加固液化砂土地基的动力反应研究[J]. 岩土工程学报, 2013, 35(8): 1486-1495. (CHENG Xiao-hui, MA Qiang, YANG Zuan, et al.Dynamic response of liquefiable sand foundation improved by bio-grouting[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1486-1495. (in Chinese)) [4] 张鑫磊, 陈育民, 张喆, 等. 微生物灌浆加固可液化钙质砂地基的振动台试验研究[J]. 岩土工程学报, 2020, 42(6): 1023-1031. (ZHANG Xin-lei, CHEN Yu-min, ZHANG Zhe, et al.Performance evaluation of liquefaction resistance of a MICP-treated calcareous sandy foundation using shake table tests[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1023-1031. (in Chinese)) [5] 马瑞男, 郭红仙, 程晓辉, 等. 微生物拌和加固钙质砂渗透特性试验研究[J]. 岩土力学, 2018, 39(增刊2): 217-223. (MA Rui-nan, GUO Hong-xian, CHENG Xiao-hui, et al.A Permeability experiment study of calcareous sand treated by microbially induced carbonate precipitation using mixing methods[J]. Rock and Soil Mechanics, 2018, 39(S2): 217-223. (in Chinese)) [6] 李贤, 汪时机, 何丙辉, 等. 土体适用MICP技术的渗透特性条件研究[J]. 岩土力学, 2019, 40(8): 2956-2964, 2974. (LI Xian, WANG Shi-ji, HE Bing-hui, et al.Permeability condition of soil suitable for MICP method[J]. Rock and Soil Mechanics, 2019, 40(8): 2956-2964, 2974. (in Chinese)) [7] 黄明, 张瑾璇, 靳贵晓, 等. 残积土MICP灌浆结石体冻融损伤的核磁共振特性试验研究[J]. 岩石力学与工程学报, 2018, 37(12): 2846-2855. (HUANG Ming, ZHANG Jin-xuan, JIN Gui-xiao, et al.Magnetic resonance image experiments on the damage feature of microbial induced calcite precipitated residual soil during freezing-thawing cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(12): 2846-2855. (in Chinese)) [8] 刘士雨, 俞缙, 韩亮, 等. 三合土表面微生物诱导碳酸钙沉淀耐水性试验研究[J]. 岩石力学与工程学报, 2019, 38(8): 1718-1728. (LIU Shi-yu, YU Jin, HAN Liang, et al.Experimental study on water resistance of tabia surface with microbially induced carbonate precipitation[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(8): 1718-1728. (in Chinese)) [9] 欧孝夺, 莫鹏, 江杰, 等. 生石灰与微生物共同固化过湿性铝尾黏土试验研究[J]. 岩土工程学报, 2020, 42(4): 624-631. (OU Xiao-duo, MO Peng, JIANG Jie, et al.Experimental study on solidification of bauxite tailing clay with quicklime and microorganism[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 624-631. (in Chinese)) [10] 桂跃, 吴承坤, 刘颖伸, 等. 利用微生物技术改良泥炭土工程性质试验研究[J]. 岩土工程学报, 2020, 42(2): 269-278. (GUI Yue, WU Chng-kun, LIU Ying-shen, et al.Improving engineering properties of peaty soil by biogeotechnology[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 269-278. (in Chinese)) [11] 彭劼, 温智力, 刘志明, 等. 微生物诱导碳酸钙沉积加固有机质黏土的试验研究[J]. 岩土工程学报, 2019, 41(4): 733-740. (PENG Jie, WEN Zhi-li, LIU Zhi-ming, et al.Experimental research on MICP-treated organic clay[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 733-740. (in Chinese)) [12] 李驰, 王硕, 王燕星, 等. 沙漠微生物矿化覆膜及其稳定性的现场试验研究[J]. 岩土力学, 2019, 40(4): 1291-1298. (LI Chi, WANG Shuo, WANG Yan-xing, et al.Field experimental study on stability of bio-mineralization crust in the desert[J]. Rock and Soil Mechanics, 2019, 40(4): 1291-1298. (in Chinese)) [13] 支永艳, 邓华锋, 肖瑶, 等. 微生物灌浆加固裂隙岩体的渗流特性分析[J]. 岩土力学, 2019, 40(增刊1): 237-244. (ZHI Yong-hua, DENG Hua-feng, XIAO Yao, et al.Analysis of seepage characteristics of fractured rock mass reinforced by microbial grouting[J]. Rock and Soil Mechanics, 2019, 40(S1): 237-244. (in Chinese)) [14] FENG K, MONTOYA B M.Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(1): 04015057. [15] LIU L, LIU H, STUEDLEIN A W, et al.Strength, stiffness, and microstructure characteristics of biocemented calcareous sand[J]. Can Geotech J, 2019, 56(10): 1502-1513. [16] MONTOYA B M, DEJONG J T.Stress-strain behavior of sands cemented by microbially induced calcite precipitation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(6): 04015019. [17] CUI M J, ZHENG J J, ZHANG R J, et al.Influence of cementation level on the strength behaviour of bio-cemented sand[J]. Acta Geotechnica, 2017, 12(5): 971-986. [18] 方祥位, 李晶鑫, 李捷, 等. 珊瑚砂微生物固化体三轴压缩试验及损伤本构模型研究[J]. 岩土力学, 2018, 39(增刊1): 1-8. (FANG Xiang-wei, LI Jing-xin, LI Jie, et al.Study of triaxial compression test and damage constitutive model of biocemented coral sand columns[J]. Rock and Soil Mechanics, 2018, 39(S1): 1-8. (in Chinese)) [19] GAI X R, SANCHEZ M.An elastoplastic mechanical constitutive model for microbially mediated cemented soils[J]. Acta Geotechnica, 2019, 14(3): 709-726. [20] XIAO P, LIU H, STUEDLEIN A W, et al.Effect of relative density and bio-cementation on the cyclic response of calcareous sand[J]. Can Geotech J, 2019, 56(12): 1849-1862. [21] O’DONNELL T S, KAVAZANJIAN J E. Stiffness and dilatancy improvements in uncemented sands treated through micp[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(11): 02815004. [22] LIN H, SULEIMAN M T, BROWN D G, et al.Mechanical behavior of sands treated by microbially induced carbonate precipitation[J]. Journal of Geotechnical and Geo- environmental Engineering, 2016, 142(2): 13. [23] XIAO Y, WANG Y, DESAI C S, et al.Strength and deformation responses of biocemented sands using a temperature-controlled method[J]. International Journal of Geomechanics, 2019, 19(11): 04019120. [24] CUI M J, ZHENG J J, CHU J, et al.Bio-mediated calcium carbonate precipitation and its effect on the shear behaviour of calcareous sand[J]. Acta Geotechnica, 2021, 16(5): 1377-1389. [25] YAO Y P, LIU L, LUO T, et al.Unified hardening (UH) model for clays and sands[J]. Computers and Geotechnics, 2019, 110: 326-343. [26] BAUDET B, STALLEBRASS S.A constitutive model for structured clays[J]. Géotechnique, 2004, 54(4): 269-278. [27] CHEN Q S, INDRARATNA B, CARTER J, et al.A theoretical and experimental study on the behaviour of lignosulfonate-treated sandy silt[J]. Computers and Geotechnics, 2014, 61: 316-327. [28] LI X S, DAFALIAS Y, WANG Z L.State-dependant dilatancy in critical-state constitutive modelling of sand[J]. Can Geotech J, 1999, 36(4): 599-611. [29] SHEN J, CHIU C F, NG C W W, et al. A state-dependent critical state model for methane hydrate-bearing sand[J]. Computers and Geotechnics, 2016, 75: 1-11. [30] LIU J, WANG S, JIANG M J, et al.A state-dependent hypoplastic model for methane hydrate-bearing sands[J]. Acta Geotechnica, 2021, 16(1): 77-91. [31] NG C W W, BAGHBANREZVAN S, KADLICEK T, et al. A state-dependent constitutive model for methane hydrate-bearing sediments inside the stability region[J]. Géotechnique, 2020, 70(12): 1094-1108. [32] BEEN K, JEFFERIES M G.A state parameter for sands[J]. Géotechnique, 1985, 35(2): 99-112. [33] LI X S, DAFALIAS Y F.Dilatancy for cohesionless soils[J]. Géotechnique, 2000, 50(4): 449-460. [34] XIAO Y, LIU H, CHEN Y, et al.Bounding surface model for rockfill materials dependent on density and pressure under triaxial stress conditions[J]. Journal of Engineering Mechanics, 2014, 140(4): 04014002. [35] 孙增春, 汪成贵, 刘汉龙, 等. 粗粒土边界面塑性模型及其积分算法[J]. 岩土力学, 2020, 41(12): 3957-3967. (SUN Zeng-chun, WANG Cheng-gui, LIU Han-long, et al.Bounding surface plasticity model for granular soil and its integration algorithm[J]. Rock and Soil Mechanics, 2020, 41(12): 3957-3967. (in Chinese))