Abstract:The three-dimensional finite element simulation for energy piles with thermo-mechanical coupling effects is implemented by optimizing the pile-soil material parameters, boundary conditions, steps and grid types, etc. In this analysis, the stress and deformation characteristics of energy piles under inclined loads are investigated based on the existing experimental and numerical results. Further, the modelling method is validated by comparing the settlements at pile head from this study and those from the model tests and two-dimensional numerical simulations. Finally, the laws of settlements at pile head, frictions at pile side, lateral displacements and bending moments are explored through the variation of three main influence factors: vertical loads, lateral loads and temperature differences, and the corresponding suggestions for engineering design of energy piles are proposed. The results show that when the temperature difference ΔT>0℃, the thermal expansion will appear and the vertical displacement atop the pile is even upward. However, with the increase of vertical loads, the settlement-load curves will gradually tend to the curve when ΔT=0℃. Besides, the frictions at pile side are negative on the upper and middle parts of piles, and are positive on the lower part of piles. The lateral displacements and bending moments when ΔT>0℃ are both greater than those when ΔT=0℃. When ΔT<0℃, the frictions at pile side are positive on the upper and middle parts of piles, and are negative on the lower part of piles. The lateral displacements at top of the pile when ΔT>0℃ are greater than those when ΔT=0℃, the reason is different from that when ΔT>0℃, and the bending moments are less than those when ΔT=0℃.
龚建清, 彭文哲. 倾斜荷载下能量桩受力变形特性三维有限元分析[J]. 岩土工程学报, 2021, 43(11): 2105-2111.
GONG Jian-qing, PENG Wen-zhe. Three-dimensional finite element analysis of stress and deformation characteristics of energy piles under inclined loads. Chinese J. Geot. Eng., 2021, 43(11): 2105-2111.
[1] BRANDL H.Energy foundations and other thermo-active ground structures[J]. Géotechnique, 2006, 56(2): 81-122. [2] HAMADA Y, SAITOH H, NAKAMURA M, et al.Field performance of an energy pile system for space heating[J]. Energy and Buildings, 2007, 39(5): 517-524. [3] 任连伟, 孔纲强, 郝耀虎, 等. 基于能量桩现场试验的土体综合热导率系数研究[J]. 岩土力学, 2019, 40(12): 4857-4864. (REN Lian-wei, KONG Gang-qiang, HAO Yao-hu, et al.Study of soil comprehensive thermal conductivity coefficient based on field test of energy pile[J]. Rock and Soil Mechanics, 2019, 40(12): 4857-4864. (in Chinese)) [4] 孔纲强, 吕志祥, 孙智文, 等. 黏性土地基中摩擦型能量桩现场热响应试验[J]. 中国公路学报, 2021, 34(3): 95-102. (KONG Gang-qiang, LYU Zhi-xiang, SUN Zhi-wen, et al.Thermal response testing of friction energy piles embedded in clay[J]. China Journal of Highway and Transport, 2021, 34(3): 95-102. (in Chinese)) [5] 刘汉龙, 孔纲强, 吴宏伟. 能量桩工程应用研究进展及PCC能量桩技术开发[J]. 岩土工程学报, 2014, 36(1): 176-181. (LIU Han-long, KONG Gang-qiang, NG C W W, et al. Applications of energy piles and technical development of PCC energy piles[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 176-181. (in Chinese)) [6] LALOUI L, NUTH M, VULLIET L.Experimental and numerical investigations of the behaviour of a heat exchanger pile[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(8): 763-781. [7] BOURNE-WEBB P J, AMATYA B, SOGA K, et al. Energy pile test at Lambeth College, London: geotechnical and thermodynamic aspects of pile response to heat cycles[J]. Géotechnique, 2009, 59(3): 237-248. [8] 桂树强, 程晓辉. 能源桩换热过程中结构响应原位试验研究[J]. 岩土工程学报, 2014, 36(6): 1087-1094. (GUI Shu-qiang, CHENG Xiao-hui.In-situ tests on structural responses of energy piles during heat exchanging process[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1087-1094. (in Chinese)) [9] 路宏伟, 蒋刚, 王昊, 等. 摩擦型能源桩荷载-温度现场联合测试与承载性状分析[J]. 岩土工程学报, 2017, 39(2): 334-342. (LU Hong-wei, JIANG Gang, WANG Hao, et al.In-situ tests and thermo-mechanical bearing characteristics of friction geothermal energy piles[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2): 334-342. (in Chinese)) [10] 方金城, 孔纲强, 孟永东, 等. 低承台2×2能量桩基础单桩运行热力耦合特性研究[J]. 岩土工程学报, 2020, 42(2): 317-324. (FANG Jin-cheng, KONG Gang-qiang, MENG Yong-dong, et al.Thermo-mechanical coupling characteristics of single energy pile operation in 2×2 pile-cap foundation[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 317-324. (in Chinese)) [11] 任连伟, 任军洋, 孔纲强, 等. 冷热循环下PHC能量桩热力响应和承载性能现场试验[J]. 岩土力学, 2021, 42(2): 529-536, 546.(REN Lian-wei, REN Jun-yang, KONG Gang-qiang, et al. Field tests on thermo-mechanical response and bearing capacity of PHC energy pile under cooling-heating cyclic temperature[J]. Rock and Soil Mechanics, 2021, 42(2): 529-536, 546. (in Chinese)) [12] 黄旭, 孔纲强, 刘汉龙, 等. 循环温度场作用下PCC能量桩热力学特性模型试验研究[J]. 岩土力学, 2015, 36(3): 667-673. (HUANG Xu, KONG Gang-qiang, LIU Han-long, et al.Experimental research on thermomechanical characteristics of PCC energy pile under cyclic temperature field[J]. Rock and Soil Mechanics, 2015, 36(3): 667-673. (in Chinese)) [13] 孔纲强, 王成龙, 刘汉龙, 等. 多次温度循环对能量桩桩顶位移影响分析[J]. 岩土力学, 2017, 38(4): 958-964. (KONG Gang-qiang, WANG Cheng-long, LIU Han-long, et al.Analysis of pile head displacement of energy pile under repeated temperature cycling[J]. Rock and Soil Mechanics, 2017, 38(4): 958-964. (in Chinese)) [14] 陆浩杰, 吴迪, 孔纲强, 等. 循环温度作用下饱和黏土中摩擦型桩变形特性研究[J]. 工程力学, 2020, 37(5): 156-165. (LU Hao-jie, WU Di, KONG Gang-qiang, et al.Displacement characteristics of friction piles embedded in saturated clay subjected to thermal cycles[J]. Engineering Mechanics, 2020, 37(5): 156-165. (in Chinese)) [15] 刘干斌, 谢琦峰, 范高飞, 等. 饱和黏土中热交换桩承载力特性模型试验研究[J]. 岩石力学与工程学报, 2017, 36(10): 2535-2543. (LIU Gan-bin, XIE Qi-feng, FAN Gao-fei, et al.Model test on bearing capacity characteristics of heat exchanger piles in saturated clays[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(10): 2535-2543. (in Chinese)) [16] CESAR Pasten, SANTAMARINA J Carlos.Thermally induced long-term displacement of thermoactive piles[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(5): 6014003. [17] SURYATRIYASTUTI M E, MROUEH H, BURLON S.A load transfer approach for studying the cyclic behavior of thermo-active piles[J]. Computers and Geotechnics, 2014, 55(1): 378-391. [18] 费康, 戴迪, 洪伟. 能量桩单桩工作特性简化分析方法[J]. 岩土力学, 2019, 40(1): 70-80, 90.(FEI Kang, DAI Di, HONG Wei. A simplified method for working performance analysis of single energy piles[J]. Rock and Soil Mechanics, 2019, 40(1): 70-80, 90. (in Chinese)) [19] ROTTA LORIA A F, DONNA A D, LALOUI L. Numerical study on the suitability of centrifuge testing for capturing the thermal-induced mechanical behavior of energy piles[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(10): 4015042. [20] ROTTA LORIA A F, GUNAWAN A, SHI C, et al. Numerical modelling of energy piles in saturated sand subjected to thermo-mechanical loads[J]. Geomechanics for Energy and the Environment, 2015, 1: 1-15. [21] 郝耀虎, 孔纲强, 彭怀风, 等. 桩端约束对桩身热力学特性影响的模拟分析[J]. 防灾减灾工程学报, 2017, 37(4): 532-539. (HAO Yao-hu, KONG Gang-qiang, PENG Huai-feng, et al.Analysis of thermo-mechanical behavior of single pile influenced by pile tip constraint[J]. Journal of Disaster Prevention and Mitigation Engineering, 2017, 37(4): 532-539. (in Chinese)) [22] NG C, ZHANG L M.Three-dimensional analysis of performance of laterally loaded sleeved piles in sloping ground[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2001, 127(6): 499-509.