Experimental study on surface erosion resistances and mechanical behavior of MICP-FR-treated calcareous sand
LI Hao1, TANG Chao-sheng1, YIN Li-yang1, LIU Bo1, LÜ Chao1, WANG Dian-long1, PAN Xiao-hua1, WANG Han-lin2, SHI Bin1
1. School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China; 2. Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
Abstract:The islands and reefs in South China Sea are an important support for China's "One Belt and One Road Initiative". As the main building material and foundation of construction on the islands and reefs, the calcareous sand has the bad characteristics of high porosity, easy breakage and low strength, so it is difficult to directly meet the requirements of engineering construction. In order to improve the mechanical behaviors of the calcareous sand and reduce the erosion problems caused by extreme rainstorms, an eco-friendly, cost-effective microbial-induced calcium carbonate precipitation (MICP) synergistic fiber reinforcement (FR) modification technology is proposed. The superficial layer of the calcareous sand is modified by spraying process, and the influences of the cementing liquid concentrations (0.5, 1.0, 1.5, 2.0 mol/L) and the fiber contents (0.1, 0.2, 0.3, 0.4%) on the treatment effect are considered. The cementation degree and surface erosion resistance of the calcareous sand under different treatment methods are analyzed by carrying out mini-penetration tests and simulated rainstorm scouring tests combined with electrical conductivity. The results show that: (1) The MICP technology can effectively cement the calcareous sand and improve its mechanical behaviors. The higher the cementing liquid concentration, the higher the calcium carbonate content and the penetration resistance of the samples, and the curing effect with the concentration of 2.0 mol /L is the best; (2) The addition of fiber can significantly improve the cementing effect of MICP, and the fiber content has an important influence on the mechanical behaviors of the microbial solidified samples. The peak penetration resistance first increases and then decreases with the fiber content, and the optimal fiber content is 0.2%; (3) The MICP-treated samples show better erosion resistance under the simulated rainstorm condition, the erosion amount is less than 1/7 of the untreated samples, and the effect is better after adding fiber. MICP-FR synergy can effectively improve the engineering properties of the calcareous sand and play an active role in the island construction and coastal development.
李昊, 唐朝生, 尹黎阳, 刘博, 吕超, 王殿龙, 泮晓华, 王瀚霖, 施斌. MICP-FR协同作用改善钙质砂的力学性能及抗侵蚀试验研究[J]. 岩土工程学报, 2021, 43(10): 1941-1949.
LI Hao, TANG Chao-sheng, YIN Li-yang, LIU Bo, LÜ Chao, WANG Dian-long, PAN Xiao-hua, WANG Han-lin, SHI Bin. Experimental study on surface erosion resistances and mechanical behavior of MICP-FR-treated calcareous sand. Chinese J. Geot. Eng., 2021, 43(10): 1941-1949.
[1] 文哲, 段志刚, 李守定, 等. 中国南海岛礁吹填珊瑚砂剪切力学特性[J]. 工程地质学报, 2020, 28(1): 77-84. (WEN Zhe, DUAN Zhi-gang, LI Shou-ding, et al.Shear mechanical properties of dredged coral sands from South China sea, China[J]. Journal of Engineering Geology, 2020, 28(1): 77-84. (in Chinese)) [2] 汪稔, 吴文娟. 珊瑚礁岩土工程地质的探索与研究——从事珊瑚礁研究30年[J]. 工程地质学报, 2019, 27(1): 202-207. (WANG Ren, WU Wen-juan.Exploration and research on engineering geological properties of coral reefs——engaged in coral reef research for 30 years[J]. Journal of Engineering Geology, 2019, 27(1): 202-207. (in Chinese)) [3] JIANG N J, TANG C S, YIN L Y, et al.Applicability of microbial calcification method for sandy slope surface erosion control[J]. Journal of Materials in Civil Engineering, 2019, 31(11): 04019250. [4] 胡波, 汪稔, 胡明鉴, 等. 水力吹填砂地基强夯处理试验研究[J]. 岩土力学, 2007, 28(增刊1): 89-92. (HU Bo, WANG Ren, HU Ming-jian, et al.Experimental research on dynamic consolidation method of hydraulic filled sand[J]. Rock and Soil Mechanics, 2007, 28(1): 89-92. (in Chinese)) [5] OPERSTEIN V, FRYDMAN S.The influence of vegetation on soil strength[J]. Proceedings of the Institution of Civil Engineers-Ground Improvement, 2000, 4(2): 81-89. [6] 钱春香, 王安辉, 王欣. 微生物灌浆加固土体研究进展[J]. 岩土力学, 2015, 36(6): 1537-1548. (QIAN Chun-xiang, WANG An-hui, WANG Xin.Advances of soil improvement with bio-grouting[J]. Rock and Soil Mechanics, 2015, 36(6): 1537-1548. (in Chinese)) [7] 刘汉龙, 肖鹏, 肖杨, 等. MICP胶结钙质砂动力特性试验研究[J]. 岩土工程学报, 2018, 40(1): 38-45. (LIU Han-long, XIAO Peng, XIAO Yang, et al.Dynamic behaviors of MICP-treated calcareous sand in cyclic tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 38-45. (in Chinese)) [8] 崔明娟, 郑俊杰, 赖汉江. 颗粒粒径对微生物固化砂土强度影响的试验研究[J]. 岩土力学, 2016(增刊2): 397-402. (CUI Ming-juan, ZHENG Jun-jie, LAI Han-jiang.Experimental study of effect of particle size on strength of bio-cemented sand[J]. Rock and Soil Mechanics, 2016(S2): 397-402. (in Chinese)) [9] 邵光辉, 冯建挺, 赵志峰, 等. 微生物砂浆防护粉土坡面的强度与抗侵蚀性影响因素分析[J]. 农业工程学报, 2017, 33(11): 141-147. (SHAO Guang-hui, FENG Jian-ting, ZHAO Zhi-feng, et al.Influence factor analysis related to strength and anti-erosion stability of silt slope with microbial mortar protective covering[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(11): 141-147. (in Chinese)) [10] DEJONG J T, SOGA K, KAVAZANJIAN E, et al.Biogeochemical processes and geotechnical applications: Progress, opportunities and challenges[J]. Géotechnique, 2013, 63(4): 287-301. [11] 何稼, 楚剑, 刘汉龙, 等. 微生物岩土技术的研究进展[J]. 岩土工程学报, 2016, 38(4): 643-653. (HE Jia, CHU Jian, LIU Han-long, et al.Research advances in biogeotechnologies[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 643-653. (in Chinese)) [12] 方祥位, 申春妮, 楚剑, 等. 微生物沉积碳酸钙固化珊瑚砂的试验研究[J]. 岩土力学, 2015, 36(10): 2773-2779. (FANG Xiang-wei, SHEN Chun-ni, CHU Jian, et al.An experimental study of coral sand enhanced through microbially-induced precipitation of calcium carbonate[J]. Rock and Soil Mechanics, 2015, 36(10): 2773-2779. (in Chinese)) [13] 方祥位, 李晶鑫, 李捷, 等. 珊瑚砂微生物固化体单轴损伤本构模型[J]. 地下空间与工程学报, 2018, 14(5): 93-98. (FANG Xiang-wei, LI Jing-xin, LI Jie, et al.Damage constitutive model of biocemented coral sand columns under unconfined compression[J]. Chinese Journal of Underground Space and Engineering, 2018, 14(5): 93-98. (in Chinese)) [14] 李捷, 方祥位, 申春妮, 等. 含水率对珊瑚砂微生物固化体力学特性影响研究[J]. 工业建筑, 2016(12): 93-97. (LI Jie, FANG Xiang-wei, SHEN Chun-ni, et al.Influence of moisture content on mechanical properties of biocemented coral sand columns[J]. Industrial Construction, 2016(12): 93-97. (in Chinese)) [15] 马瑞男, 郭红仙, 程晓辉, 等. 微生物拌和加固钙质砂渗透特性试验研究[J]. 岩土力学, 2018, 39(增刊2): 217-223. (MA Rui-nan, GUO Hong-xian, CHENG Xiao-hui, et al.Permeability experiment study of calcareous sand treated by microbially induced carbonate precipitation using mixing methods[J]. Rock and Soil Mechanics, 2018, 39(S2): 217-223. (in Chinese)) [16] 欧益希, 方祥位, 张楠, 等. 溶液盐度对微生物固化珊瑚砂的影响[J]. 后勤工程学院学报, 2016, 32(1):78-82. (OU Yi-xi, FANG Xiang-wei, ZHANG Nan, et al.Influence of solution salinity on microbial biocementation of coral sand[J]. Journal of Logistical Engineering University, 2016, 32(1): 78-82. (in Chinese)) [17] 彭劼, 田艳梅, 杨建贵. 海水环境下MICP加固珊瑚砂试验[J]. 水利水电科技进展, 2019, 39(1): 62-66. (PENG Jie, TIAN Yan-mei, YANG Jian-gui.Experiments of coral sand reinforcement using MICP in seawater environment[J]. Advances in Science and Technology of Water Resources, 2019, 39(1): 62-66. (in Chinese)) [18] 谢约翰, 唐朝生, 尹黎阳, 等. 纤维加筋微生物固化砂土的力学特性[J]. 岩土工程学报, 2019, 41(4): 675-682. (XIE Yue-han, TANG Chao-sheng, YIN Li-yang, et al.Mechanical behavior of microbial-induced calcite precipitation (MICP)-treated soil with fiber reinforcement[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 675-682. (in Chinese)) [19] 吴洋, 练继建, 闫玥, 等. 巴氏芽孢八叠球菌及相关微生物的生物矿化的分子机理与应用[J]. 中国生物工程杂志, 2017, 37(8): 96-103. (WU Yang, LIAN Ji-jian, YAN Yue, et al.Mechanism and applications of bio-mineralization induced by sporosarcinapasteurii and related microorganisms[J]. China Biotechnology, 2017, 37(8): 96-103. (in Chinese)) [20] WANG D Y, TANG C S, CUI Y J, SHI B, LI J.Effects of wetting-drying cycles on soil strength profile of a silty clay in micro-penetrometer tests[J]. Engineering Geology, 2016, 206: 60-70. [21] 施斌, 刘志彬, 蔡奕. 超微型贯入仪的研制及其应用[J]. 岩土力学, 2005(8): 1211-1215. (SHI Bin, LIU Zhi-bin, CAI Yi.Development of the super mini-penetrometer and its application[J]. Rock and Soil Mechanics, 2005(8): 1211-1215. (in Chinese)) [22] RÖMKENS M J M, HELMING K, PRASAD S N. Soil erosion under different rainfall intensities, surface roughness, and soil water regimes[J]. Catena, 2002, 46(2/3): 103-123. [23] 金宗川. 钙质砂的休止角研究与工程应用[J]. 岩土力学, 2018, 39(7): 2583-2590. (JIN Zong-chuan.Study of natural repose angle of calcareous sand and engineering application[J]. Rock and Soil Mechanics, 2018, 39(7): 2583-2590. (in Chinese)) [24] 李贤, 汪时机, 何丙辉, 等. 土体适用MICP技术的渗透特性条件研究[J]. 岩土力学, 2019, 40(8): 2956-2964, 2974. (LI Xian, WANG Shi-ji, HE Bing-hui, et al.Permeability condition of soil suitable for MICP method[J]. Rock and Soil Mechanics, 2019, 40(8): 2956-2964, 2974. (in Chinese)) [25] LI M D, LI L, OGBONNAYA U, et al.Influence of fiber addition on mechanical properties of MICP-treated sand[J]. Journal of Materials in Civil Engineering, 2016, 28(4): 04015166. [26] TANG C S, SHI B, GAO W, CHEN F, CAI Y.Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil[J]. Geotextiles & Geomembranes, 2007, 25(3):194-202. [27] TANG C S, SHI B, ZHAO L Z.Interfacial shear strength of fiber reinforced soil[J]. Geotextiles & Geomembranes, 2010, 28(1): 54-62.