Establishing probabilistic transformation models for geotechnical design parameters using multivariate Gaussian Copula
LI Dian-qing1,2, LÜ Tian-jian1,2, TANG Xiao-song1,2
1. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China; 2. Institute of Engineering Risk and Disaster Prevention, Wuhan University, Wuhan 430072, China
Abstract:In geotechnical practice, it is common to transform the measured parameters to the design ones. It is also known that the probabilistic transformation models provide an effective tool for predicting the actual range of the design parameters. The commonly-used methods for establishing probabilistic transformation models based on multivariate normal distribution may induce large errors and have a limitation of incorporating various types of marginal distribution for soil parameters. In this study, a new method for establishing the probabilistic transformation models for geotechnical design parameters based on the multivariate Gaussian Copula is proposed. The global clay database CLAY/6/535 compiled in the literature is employed to verify the effectiveness of the proposed method. The probabilistic transformation models from CPTU indices to undrained shear strength and OCR are then derived. The results indicate that by modeling the marginal distribution and dependence structure individually, the proposed method removes the limitation of incorporating various types of marginal distribution and avoids error propagation from marginal distribution to dependence structure. For the proposed probabilistic transformation models, the uncertainty and correlation of design parameters are inversely proportional to the number of the measured parameters and the correlation between the measured and design parameters.
[1] 岩土工程勘察规范:GB 50021—2001[S]. 2009. (National Code for Investigation of Geotechnical Engineering:GB 50021—2001[S]. 2009. (in Chinese)) [2] 土工试验方法标准:GB/T 50123—2019[S]. 2019. (Standard for Geotechnical Testing Method:GB/T 50123—2019[S]. 2019. (in Chinese)) [3] 张博庭. 用有限比较法进行拟合优度检验[J]. 岩土工程学报, 1991, 13(6): 84-91. (ZHANG Bo-ting.Test of goodness of fit using finite comparison method[J]. Chinese Journal of Geotechnical Engineering, 1991, 13(6): 84-91. (in Chinese)) [4] 张广文, 刘令瑶. 确定随机变量概率分布参数的推广Bayes法[J]. 岩土工程学报, 1995, 17(3): 91-94. (ZHANG Guang-wen, LIU Lin-yao.Extend Bayes method of probability distribution parameters in conforming random variable[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(3): 91-94. (in Chinese)) [5] 唐小松, 李典庆, 周创兵, 等. 不完备概率信息条件下边坡可靠度分析方法[J]. 岩土工程学报, 2013, 35(6): 1027-1034. (TANG Xiao-song, LI Dian-qing, ZHOU Chuang-bing, et al.Reliability analysis of slopes with incomplete probability information[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(6): 1027-1034. (in Chinese)) [6] TANG X S, LI D Q, RONG G, et al.Impact of copula selection on geotechnical reliability under incomplete probability information[J]. Computers and Geotechnics, 2013, 49: 264-278. [7] LI D Q, TANG X S, ZHOU C B, et al.Characterization of uncertainty in probabilistic model using bootstrap method and its application to reliability of piles[J]. Applied Mathematical Modelling, 2015, 39(17): 5310-5326. [8] General Principles on Reliability for Structures:ISO2394: 2015[S]. 2015. [9] BJERRUM L.Geotechnical properties of Norwegian marine clays[J]. Géotechnique, 1954, 4(2): 49-69. [10] KULHAWY F H, MAYNE P W.Manual on Estimating Soil Properties for Foundation Design[R]. Ithaca: Cornell University, 1990. [11] SINGH V K, CHUNG S G.Evaluation of overconsolidation ratios from laboratory and in situ tests on Busan clay[J]. Engineering Geology, 2015, 199: 38-47. [12] 马海鹏, 陈祖煜, 于沭. 上海地区土体抗剪强度与静力触探比贯入阻力相关关系研究[J]. 岩土力学, 2014, 35(2): 536-542. (MA Hai-peng, CHEN Zu-yu, YU Shu.Correlations of soil shear strength with specific penetration resistance of CPT in Shanghai area[J]. Rock and Soil Mechanics, 2014, 35(2): 536-542. (in Chinese)) [13] 屈若枫, 徐光黎, 王金峰, 等. 武汉地区典型软土物理力学指标间的相关性研究[J]. 岩土工程学报, 2014, 36(增刊2): 113-119. (QU Ruo-feng, XU Guang-li, WANG Jin-feng, et al.Correlations of physical and mechanical properties of typical soft soils in Wuhan[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(S2): 113-119. (in Chinese)) [14] 宋许根, 王志勇, 柏威伟, 等. 珠海西部中心城区大面积深厚软土工程特性研究[J]. 岩石力学与工程学报, 2019, 38(7): 1434-1451. (SONG Xu-gen, WANG Zhi-yong, BAI Wei-wei, et al.Study on engineering characteristics of large-scale deep soft soil in the central area of western Zhuhai[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(7): 1434-1451. (in Chinese)) [15] 郭林坪, 穆坤, 杨爱武, 等. 天津滨海新区黏性土物理力学性质指标相关性[J]. 地下空间与工程学报, 2019, 15(2): 452-457. (GUO Lin-ping, MU Kun, YANG Ai-wu, et al.Correlation analysis on physic-mechanical properties of clayey soil in Binhai new area in Tianjin[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(2): 452-457. (in Chinese)) [16] MAYNE P W, PEUCHEN J, BALTOUKAS D. Piezocone evaluation of undrained strength in soft to firm offshore clays [C]// Frontiers in Offshore Geotechnics III: Proceedings of the 3rd International Symposium on Frontiers in Offshore Geotechnics, 2015, Oslo. [17] PHOON K K.Reliability-based design of foundations for transmission line structures[D]. Ithaca: Cornell University, 1995. [18] PHOON K K, KULHAWY F H.Evaluation of geotechnical property variability[J]. Canadian Geotechnical Journal, 1999, 36(4): 625-639. [19] CHING J, PHOON K K, CHEN Y C.Reducing shear strength uncertainties in clays by multivariate correlations[J]. Canadian Geotechnical Journal, 2010, 47(1): 16-33. [20] CHING J, CHEN J R, YEH J Y, et al.Updating uncertainties in friction angles of clean sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(2): 217-229. [21] CHING J, PHOON K K.Establishment of generic transformations for geotechnical design parameters[J]. Structural Safety, 2012, 35: 52-62. [22] CHING J, PHOON K K.Modeling parameters of structured clays as a multivariate normal distribution[J]. Canadian Geotechnical Journal, 2012, 49(5): 522-545. [23] CHING J, PHOON K K, CHEN C H.Modeling piezocone cone penetration (CPTU) parameters of clays as a multivariate normal distribution[J]. Canadian Geotechnical Journal, 2014, 51(1): 77-91. [24] D'IGNAZIO M, PHOON K K, TAN S A, et al. Correlations for undrained shear strength of fnnish soft clays[J]. Canadian Geotechnical Journal, 2016, 53(10): 1628-1645. [25] LIU S, ZOU H, CAI G, et al.Multivariate correlation among resilient modulus and cone penetration test parameters of cohesive subgrade soils[J]. Engineering Geology, 2016, 209: 128-142. [26] ZOU H, LIU S, CAI G, et al.Multivariate correlation analysis of seismic piezocone penetration (SCPTU) parameters and design properties of Jiangsu quaternary cohesive soils[J]. Engineering Geology, 2017, 228: 11-38. [27] LUMB P.Safety factors and the probability distribution of soil strength[J]. Canadian Geotechnical Journal, 1970, 7(3): 225-242. [28] 苏永华, 何满潮, 孙晓明. 大子样岩土随机参数统计方法[J]. 岩土工程学报, 2001, 23(1): 117-119. (SU Yong-hua, HE Man-chao, SUN Xiao-ming.Approach on asymptotic approximations of polynomials for probability density function of geotechnics random parameters[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(1): 117-119. (in Chinese)) [29] 陈立宏, 陈祖煜, 刘金梅. 土体抗剪强度指标的概率分布类型研究[J]. 岩土力学, 2005, 26(1): 37-40. (CHEN Li-hong, CHEN Zu-yu, LIU Jin-mei.Probability distribution of soil strength[J]. Rock and Soil Mechanics, 2005, 26(1): 37-40. (in Chinese)) [30] 张蕾, 唐小松, 李典庆, 等. 基于Copula函数的岩土结构物系统可靠度分析[J]. 岩土力学, 2016, 37(1): 193-202. (ZHANG Lei, TANG Xiao-song, LI Dian-qing, et al.System reliability analysis of geotechnical structures based on the Copula function[J]. Rock and Soil Mechanics, 2016, 37(1): 193-202. (in Chinese)) [31] WANG F, LI H.Distribution modeling for reliability analysis: Impact of multiple dependences and probability model selection[J]. Applied Mathematical Modelling, 2018, 59: 483-499. [32] 唐小松. 基于Copula理论的岩土体参数不确定性建模与可靠度分析[D]. 武汉: 武汉大学, 2014. (TANG Xiao-song.Uncertainty Modeling of Correlated Geotechnical Parameters and Reliability Analysis Using Copulas[D]. Wuhan: Wuhan University, 2014. (in Chinese)) [33] JOE H.Families of m-variate distributions with given margins and m(m-1)/2 bivariate dependence parameters[J]. Lecture Notes-Monograph Series, 1996: 120-141. [34] SKLAR A.Fonctions de répartition àn dimensions et leurs marges[J]. Publications de l'Institut de Statistique de l'Université de Paris, 1959, 8: 229-231. (SKLAR A.N-dimensional distribution functions and their margins[J]. Publications of the Institute of Statistics of the University of Paris, 1959, 8: 229-231. (in French)) [35] CHERUBINI U, LUCIANO E, VECCHIATO W.Copula Methods in Finance[M]. New York: John Wiley & Sons, 2004. [36] MARI D D, KOTZ S.Correlation and Dependence[M]. Singapore: World Scientific, 2001. [37] NELSEN R B.An introduction to Copulas[M]. 2nd ed. New York: Springer, 2006. [38] IMAN R L, CONOVER W J.A distribution-free approach to inducing rank correlation among input variables[J]. Communications in Statistics-Simulation and Computation, 1982, 11(3): 311-334. [39] DING P.On the conditional distribution of the multivariate t distribution[J]. The American Statistician, 2016, 70(3): 293-295. [40] KEARNS M, RON D.Algorithmic stability and sanity-check bounds for leave-one-out cross-validation[J]. Neural Computation, 1999, 11(6): 1427-1453.