Binary-medium model for loess considering unified strength theory
LI Hang-zhou1, XIONG Guang-dong2, GUO Tong1, LIAO Hong-jian1, PU Ming3, Han Bo1
1. Department of Civil Engineering,Xi′an Jiaotong University,Xi′an 710049,China; 2. Northwest Electric Power Design Institute Co., Ltd. of China Power Engineering Consulting Group,Xi′an 710075,China; 3. Shaanxi Engineering Research Center of Soil Body,China Electronic Research Institute of Engineering Investigation and Design,Xi′an 710001,China
Abstract:The strength deformation characteristics of loess are complicated. It is important for engineering construction to accurately predict the mechanical behavior of loess. The constitutive model for loess is studied. The unified strength theory is introduced. A unified yield criterion in terms of stress invariants is determined. The strength constituent of loess is identified. The evolution of cohesion strength and friction strength is explained during the deformation. Combining with the basic theory of binary medium model, the models for the cementation and friction mediums of loess are established, as well as the damage parameters. Based on the principle of equivalent strain, a unified binary medium constitutive model for loess is proposed. The determination of model parameters is analyzed. The constitutive model is verified by the triaxial tests on loess. The comparison between the proposed model and the unified elastoplastic model is conducted. The applicability of the binary-medium model is further analyzed.
[1] 邓国华,邵生俊,佘芳涛. 结构性黄土的修正剑桥模型[J]. 岩土工程学报,2012,34(5):834-841. (DENG Guo-hua,SHAO Sheng-jun,SHE Fang-tao. Modified Cam clay model of structured loess[J]. Chinese Journal of Geotechnical Engineering,2012,34(5):834-841.(in Chinese)) [2] 方祥位,申春妮,陈正汉,等. 原状Q2黄土三轴剪切细观结构演化定量研究[J]. 岩土力学,2010,31(1):27-31. (FANG Xiang-wei,SHEN Chun-ni,CHENG Zheng-han,et al. Quantitative study of meso-structure evolution of intact Q2 loess during triaxial shear test[J]. Rock and Soil Mechanics,2010,31(1):27-31.(in Chinese)) [3] DESAI C S. Mechanics of materials and interfaces the disturbed state concept[M]. Boca Raton: CRC Press,2001. [4] 方祥位,李洋洋,申春妮,等. 基于扰动状态概念的非饱和原状Q2黄土本构模型[J]. 后勤工程学院学报, 2017, 33(4):1-8. (FANG Xiang-wei,LI Yang-yang,SHEN Chun-ni,et al. Constitutive Model of unsaturated intact Q2 loess based on disturbed state concept[J]. Journal of Logistical Engineering University. 2017, 33(4):1-8.(in Chinese)) [5] 沈珠江,陈铁林. 岩土破损力学:基本概念、目标和任务[C]// 中国岩石力学与工程学会第七次学术大会. 2002. (SHEN Zhu-jiang,CHEN Tie-lin. Basic concepts,objectives and tasks of geotechnical damage mechanics[C]// Seventh Academic Conference of the Chinese Society of Rock Mechanics and Engineering. 2002.(in Chinese)) [6] 沈珠江, 胡再强. 黄土的二元介质模型[J]. 水利学报, 2003, 34(7): 1-6. (SHEN Zhu-jiang, HU Zai-qiang. Binary medium modelfor loess[J]. Journal of Hydraulic Engineering, 2003, 34(7):1-6.(in Chinese)) [7] 李宏儒, 胡再强, 冯 飞, 等. 结构性黄土二元介质本构模型在局部化剪切带中的应用[J]. 岩土力学, 2012, 33(9): 2803-2810. (LI Hong-ru, HU Zai-qiang, FENG Fei, et al. Application of structural loess binary-medium model to localization shear band[J]. Rock and Soil Mechanics, 2012, 33(9): 2803-2810.(in Chinese)) [8] FAN Wen, DENG Long-sheng, YUAN Wei-na. Double parameter binary-medium model of fissured loess[J]. Engineering Geology, 2018, 236: 22-28 [9] 蒋明镜,卢国文,李 涛. 基于胶结破损机理的非饱和结构性黄土本构模型[J]. 天津大学学报(自然科学与工程技术版), 2020, 53(3): 243-251. (JIANG Ming-jing, LU Guo-wen, LI Tao. Three dimensional constitutive model of unsaturated structural loess based on the mechanism of degradation evolution[J]. Journal of Tianjin University(Science and Technology), 2020, 53(3): 243-251.(in Chinese)) [10] YU M H, HE L N. A new model and theory on yield and failure of materials under the complex stress state[M]// Mechanical Behaviour of Materias VI. Amsteradam: Elsevier, 1992: 841-846.