摘要 非洲某工程桥梁基础穿越深厚砂性土,为了研究砂性地层钻孔桩承载特性,选取了主桥的TP-1和TP-2两根2.0 m 直径的桩基进行现场试验及对临近钻孔进行旁压试验。试验结果表明,深厚砂性土会对成桩质量产生影响,砂性土越厚,桩端沉渣越显著。桩端沉渣会显著影响桩基沉降,使桩端阻力产生弱化和强化特性。此外,基于欧洲规范(BS EN 1997—2)旁压试验预测桩基承载力,会高估95%~140%桩基承载力,而公路桥涵规范计算的承载力也明显大于实测值。通过对旁压试验进行三段线性分类,可得到一种直接利用旁压试验预测桩基承载力的方法,相较于欧洲规范和公路桥涵规范更适用于深厚砂性土桩基承载力预测。
Abstract:The foundation of a bridge in Africa passes through thick sandy soils. In order to study the bearing characteristics of bored piles in thick sandy soils, two 2.0 m-diameter pile foundations (TP-1 and TP-2) of the main bridge are chosen to conduct field tests, and pressuremeter tests (PMT) on adjacent boreholes are performed. The test results show that the thick sandy soils have an important influences on pile quality, and the thicker sandy soils will induce serious pile base sediment. The pile base sediment will significantly affect the settlement of the pile foundation, resulting in weakening and strengthening of the pile base resistance. In addition, the prediction of the bearing capacity of piles based on the PMT of European Code (BS EN 1997—2) will overestimate about 95%~140% of the bearing capacity of the pile foundation, and the bearing capacity calculated by theChina's specification for design of foundation ofhighway bridges and culverts is significantly larger than the measured value. A new method by performing three-stage linear classification of the PMT can directly predict the bearing capacity of piles. The proposed method is more suitable for the prediction of the bearing capacity of piles in thick sandy soil areas than the European Code and the China's specifications for design of foundation of highway bridges and culverts.
邓会元, 戴国亮, 竺明星, 龚维明. 基于旁压试验的桩基承载力计算分析[J]. 岩土工程学报, 2021, 43(S1): 19-24.
DENG Hui-yuan, DAI Guo-liang, ZHU Ming-xing, GONG Wei-ming. Calculation and analysis of bearing capacity of pile foundation based on PMT. Chinese J. Geot. Eng., 2021, 43(S1): 19-24.
[1] Investigation and Testing-Static Test on Single Pile: French Standard NF P 94-150-1. Association Francaise de Normalisation, 1999. [2] 汪 稔, 胡建华. 旁压试验在苏通大桥地质勘察工程中的应用[J]. 岩土力学, 2003, 24(6): 887-891. (WANG Ren, HU Jian-hua. Application of pressuremeter test to estimating intensity parameters in geological exploration for Sutong Bridge[J]. Rock and Soil Mechanics, 2003, 24(6): 887-891. (in Chinese)) [3] 温 勇, 杨光华, 汤连生, 等. 基于原位旁压试验的切线模量法及其初步验证[J]. 岩土工程学报, 2017, 39(S1): 121-125. (WEN Yong, YANG Guang-hua, TANG Lian-sheng, et al. Tangent modulus method based on in-situ pressuremeter tests and its preliminary validation[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(S1): 121-125. (in Chinese)) [4] 彭柏兴. 旁压试验确定单桩承载力的方法与应用[J]. 西部探矿工程, 1998,10(3): 24-27. (PENG Bai-xing. The method and use for pressureter test to determine the capacity of single pile[J]. West-China Exploration Engineering, 1998,10(3): 24-27. (in Chinese)) [5] 王哲威, 付开隆. 阿尔及利亚东西高速公路梅拉尔旁压试验应用[J]. 铁道工程学报, 2013,30(1): 17-21. (WANG Zhe-wei,FU Kai-long. Application of menard pressurementer test in construction of east-west freeway of Algeria[J]. Journal of Railway Engineering Society, 2013,30(1): 17-21. (in Chinese)) [6] 杨石飞, 顾国荣, 董建国. 旁压试验确定上海软土地区的单桩承载力[J]. 上海地质, 2002,23(4): 41-46. (YANG Shi-fei, GU Guo-rong, DONG Jian-guo. Determination of bearing capacity of single pile in Shanghai soft soil with pressuremeter test[J]. Shanghai Geology, 2002,23(4): 41-46. (in Chinese)) [7] SCHLOSSER F, GUILLOUX A, ZAGHOUANI K, et al. Rades bridge drilled shafts designed and tested using menard pressuremeter[C]// International Foundation Congress and Equipment Expo 2009. March 15-19, 2009, Orlando, Florida, USA. Reston, VA, USA: American Society of Civil Engineer, 2009: 42-49. [8] BOUMEDI J Y, BAUD J P, RADIGUET B. LNG tanks at Damietta on drilled shafts designed and tested using mnard PMT[C]// International Foundation Congress and Equipment Expo 2009. March 15-19, 2009, Orlando, Florida, USA. Reston, VA, USA: American Society of Civil Engineer, 2009: 103-110. [9] BAGUELIN F, JÉZÉQUEL J F, SHIELDS D H. The Pressuremeter and Foundation Engineering[M]. Clausthal: Trans Tech Publications, 1978. [10] BRIAUD J L. The Pressuremeter[M]. A. A. Balkema, Brookfield VT, 1992. [11] 基桩静载试验自平衡法:JT/T738—2009[S]. 北京:人民交通出版社, 2009.(Static Loading Test of Foundation Pile-Self Balance Method: JT/T738—2009[S]. Beijing: China Communications Press, 2009.(in Chinese)) [12] Eurocode 7:Geotechnical Design-Part 2: Ground Investigation and Testing: EN 1997-2[S]. Brussel, Belgium: CEN, 2007. [13] 公路桥涵地基与基础设计规范:JTG 3363—2019[S]. 北京:人民交通出版社, 2019.(Specifications for Design of Foundation of Highway Bridges and Culverts: JTG3363—2019[S]. Beijing: China Communications Press, 2019.(in China)) [14] 赖远明, 张 耀, 张淑娟, 等. 超饱和含水率和温度对冻结砂土强度的影响[J]. 岩土力学, 2009, 30(12): 3665-3670. (LAI Yuan-ming, ZHANG Yao, ZHANG Shu-juan, et al. Experimental study of strength of frozen sandy soil under different water contents and temperatures[J]. Rock and Soil Mechanics, 2009, 30(12): 3665-3670. (in Chinese)) [15] 邵玉娴, 施 斌, 顾 凯, 等. 非饱和黏性土抗剪强度的温度效应试验研究[J]. 工程地质学报,2011, 19(1): 137-142. (SHAO Yu-xian, SHI Bin, GU Kai, et al. Direct shear test for temperature effect on shear strength of unsaturated clayey soils[J]. Journal of Engineering Geology, 2011, 19(1): 137-142. (in Chinese))