Instability mechanism and disaster mitigation measures of long-distance landslide at high location in Jinsha River junction zone: case study of Sela landslide in Jinsha River, Tibet
ZHU Sai-nan1, YIN Yue-ping1, WANG Meng2, ZHU Mao3, WANG Chen-hui4, WANG Wen-pei1, LI Jun-feng1, ZHAO Hui1
1. China Institute of Geological Environment Monitoring, Beijing 100081, China; 2. Sichuan Institute of Geological Survey, Chengdu 610081, China; 3. Beijing Vastitude Technology Co., Ltd., Beijing 100081, China; 4. Center for Hydrogeology and Environmental Geology Survey, China Geological Survey, Baoding 071051, China
Abstract:The Jinsha River junction zone is the active fault one dominated by strong compression. It belongs to the topography of high mountains and valleys, the rockmass structure is complex, and the weak rock strata develop, and the high-location geo-hazards occur frequently. Taking Sela landslide in the Jinsha River as an example, the methods of multi-phase remote sensing data, field investigation and surveying, multi-phase InSAR dynamic observation, geophysical exploration and surface displacement monitoring are used to analyze the basic characteristics, deformation process, development trend and formation mechanism of Sela landslide. Considering the hydropower development and special geological conditions of the Jinsha River, the early identification and disaster risk management of high-position landslides are discussed. The results are as follows: Sela landslide is a typical one with the height difference of 693 m and the volume of about 6520×104 m3. Based on its deformation characteristics, the landslide is divided into three deformation areas. Under the influences of geological structure, stratigraphic lithology, rainfall and river erosion, the instability mode of the landslide is a multistage progressive failure, which is likely to occur in the front of the landslide in the future. The advanced technology such as the integration of space and earth can identify the deformation area and deformation quantity of the high-position landslide in time, and provide scientific basis for the disaster prevention and mitigation of basin disaster chain.
朱赛楠, 殷跃平, 王猛, 朱茂, 王晨辉, 王文沛, 李俊峰, 赵慧. 金沙江结合带高位远程滑坡失稳机理及减灾对策研究——以金沙江色拉滑坡为例[J]. 岩土工程学报, 2021, 43(4): 688-697.
ZHU Sai-nan, YIN Yue-ping, WANG Meng, ZHU Mao, WANG Chen-hui, WANG Wen-pei, LI Jun-feng, ZHAO Hui. Instability mechanism and disaster mitigation measures of long-distance landslide at high location in Jinsha River junction zone: case study of Sela landslide in Jinsha River, Tibet. Chinese J. Geot. Eng., 2021, 43(4): 688-697.
[1] 黄润秋. 岩石高边坡发育的动力过程及其稳定性控制[J]. 岩石力学与工程学报, 2008, 27(8): 1525-1544. (HUANG Run-qiu.Geodynamical process and stability control of high rock slope development[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(8): 1525-1544. (in Chinese)) [2] 许强, 郑光, 李为乐, 等. 2018年10月和11月金沙江白格两次滑坡-堰塞堵江事件分析研究[J]. 工程地质学报, 2018, 26(6): 1534-1551. (XU Qiang, ZHENG Guang, LI Wei-le, et al.Study on successive landslide damming events of Jinsha River in Baige village on October 11 and November 3, 2018[J]. Journal of Engineering Geology, 2018, 26(6): 1534-1551. (in Chinese)) [3] 邓建辉, 高云建, 余志球, 等. 堰塞金沙江上游的白格滑坡形成机制与过程分析[J]. 工程科学与技术, 2019, 51(1): 9-16. (DENG Jian-hui, GAO Yun-jian, YU Zhi-qiu, et al.Analysis on the formation mechanism and process of baige landslides damming the Upper Reach of Jinsha River, China[J]. Advanced Engineering Sciences, 2019, 51(1): 9-16. (in Chinese)) [4] 陈剑平, 李会中. 金沙江上游快速隆升河段复杂结构岩体灾变特征与机理[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1167. (CHEN Jian-ping, LI Hui-zhong.Genetic mechanism and disasters features of complicated structural rock mass along the rapidly uplift section at the upstream of Jinsha River[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(4): 1167. (in Chinese)) [5] 殷跃平, 王文沛, 张楠, 等. 强震区高位滑坡远程灾害特征研究—以四川茂县新磨滑坡为例[J]. 中国地质, 2017, 44(5): 827-841. (YIN Yue-ping, WANG Wen-pei, ZHANG Nan, et al.Long runout geological disaster initiated by the ridge-top rockslide in a strong earthquake area: a case study of the Xinmo landslide in Maoxian County, Sichuan Province[J]. Geology in China, 2017, 44(5): 827-841. (in Chinese)) [6] 殷跃平. 斜倾厚层岩质斜坡滑坡视向滑动机制研究—以重庆武隆鸡尾山滑坡为例[J]. 岩石力学与工程学报, 2010, 19(2): 217-226. (YIN Yue-ping.Mechanism of apparent dip slide of inclined bedding rockslide-a case study of Jiweshan rockslide in Wulong, Chongqing[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 19(2): 217-226. (in Chinese)) [7] 朱赛楠. 厚层基岩滑坡软弱夹层演化过程及控滑机理研究[D]. 西安: 长安大学, 2016. (ZHU Sai-nan.Research on Evolution Process and Controlling Mechanism of Weak Layer from Thick Layered Bedrock Landslide[D]. Xi'an: Chang'an University, 2016. (in Chinese)) [8] 许强, 邓茂林, 李世海, 等. 武隆鸡尾山滑坡形成机理数值模拟研究[J]. 岩土工程学报, 2018, 40(11): 2012-2021. (XU Qiang, DENG Mao-lin, LI Shi-hai, et al.Numerical simulation for faomation of Jiweishan landslide in Wulong County, Chongqing City of China[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 2012-2021. (in Chinese)) [9] GAO Y, LI B, GAO H Y, et al.Dynamic characteristics of high-elevation and long-runout landslides in the Emeishan basalt area: a case study of the Shuicheng “7.23”landslide in Guizhou, China[J]. Landslides, 2020, 1-15. [10] YIN Y P, XING A G.Aerodynamic modeling of the Yigong gigantic rock slide-debris avalanche, Tibet, China[J]. Bulletin of Engineering Geology and the Environment, 2012, 71(1): 149-160. [11] YIN Y P, CHENG Y L, LIANG J T, et al.Heavy-rainfall- induced catastrophic rockslide-debris flow at Sanxicun, Dujiangyan, after the Wenchuan Ms 8.0 earthquake[J]. Landslides, 2016, 13(1): 9-23. [12] 许强, 李为乐, 董秀军, 等. 四川茂县叠溪镇新磨村滑坡特征与成因机制初步研究[J]. 岩石力学与工程学报, 2017, 36(11): 2612-2628. (XU Qiang, LI Wei-le, DONG Xiu-jun, et al.The Xinmocun landslide on June 24, 2017 in Maoxian, Sichuan: characteristics and failure mechanism[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(11): 2612-2628. (in Chinese)) [13] WANG F W, ZHANG Y M, HUO Z T, et al.The July 14, 2003 Qianjiangping landslide, Three Gorges Reservoir, China[J]. Landslides, 2004, 1(2): 157-162. [14] 肖锐铧, 陈红旗, 冷洋洋, 等. 贵州纳雍“8·28”崩塌破坏过程与变形破坏机理初探[J]. 中国地质灾害与防治学报, 2018, 29(1): 3-9. (XIAO Rui-hua, CHEN Hong-qi, LENG Yang-yang, et al.Preliminary analysis on the failure process and mechanism of the August 28 collapse in Nayong, County, Guizhou Province[J]. The Chinese Journal of Geological Hazard and Control, 2018, 29(1): 3-9. (in Chinese)) [15] 罗先启, 葛修润. 滑坡模型试验理论及其应用[M]. 北京:中国水利水电出版社, 2008. (LUO Xian-qi, GE Xiu-run.Theory and Application of Model Test on Landslide[M]. Beijing: China Water & Power Press, 2008. (in Chinese)) [16] 张永双, 郭长宝, 周能娟. 金沙江支流冲江河巨型滑坡及其局部复活机理研究[J]. 岩土工程学报, 2013, 35(3): 445-453. (ZHANG Yong-shuang, GUO Chang-bao, ZHOU Neng-juan.Characteristics of Chongjianghe landslide at a branch of Jinsha River and its local reactivation mechanism[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 445-453. (in Chinese)) [17] 黄润秋. 中国西部地区典型岩质滑坡机理研究[J]. 第四纪研究, 2003, 23(6): 640-647. (HUANG Run-qiu.Mechanism of large scale landslides in western China[J]. Quaternary Science, 2003, 23(6): 640-647. (in Chinese)) [18] 张永双, 石菊松, 孙萍, 等. 汶川地震内外动力耦合及灾害实例[J]. 地质力学学报, 2009, 15(2): 131-141. (ZHANG Yong-shuang, SHI Ju-song, SUN Ping, et al.Coupling Between endogenic and exogenic geological processes in the Wenchuan earthquake and example analysis of geo-hazards[J]. Journal of Geomechanics, 2009, 15(2): 131-141. (in Chinese)) [19] 朱赛楠, 李滨, 冯振. 乌江流域含炭质钙质页岩三轴流变力学特性分析[J]. 中国地质灾害与防治学报, 2015, 26(4): 144-151. (ZHU Sai-nan, LI Bin, FENG Zhen.Analysis of triaxial rheological mechanical properties of carbonaceous and calcareous shale in Wujiang river basin[J]. The Chinese Journal of Geological Hazard and Control, 2015, 26(4): 144-151. (in Chinese)) [20] 朱赛楠, 殷跃平, 李滨, 等. 二叠系炭质页岩软弱夹层剪切蠕变特性研究[J]. 岩土力学, 2019, 40: 1-11. (ZHU Sai-nan, YIN Yue-ping, LI Bin, et al.Shear creep characteristics for carbonaceous shale in Permian weak intercalation[J]. Rock and Soil Mechanism, 2019, 40: 1-11. (in Chinese)) [21] 刘虎虎, 缪海波, 陈志伟, 等. 三峡库区侏罗系顺层滑坡滑带土的剪切蠕变特性[J]. 岩土工程学报, 2019, 41(8): 1573-1580. (LIU Hu-hu, MIAO Hai-bo, CHEN Zhi-wei, et al.Shear creep behaviors of sliding-zone soil of bedding landslide in Jurassic stratum in Three Gorges Reservoir area[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1573-1580. (in Chinese)) [22] 岩土工程勘察规范:GB50021—2018[S]. 2018. (Geotechnical Engineering Investigation Code:GB50021— 2018[S]. 2018. (in Chinese)) [23] YIN Yue-ping, LI Bin, WANG Wen-pei, et al.Mechanism of the December 2015 catastrophic landslide at the Shenzhen landfill and controlling geotechnical risks of urbanization[J]. Engineering, 2016, 2(2): 230-249. [24] 柴贺军, 刘汉超, 张倬元. 中国堵江滑坡发育分布特征[J]. 山地学报, 2000, 18(增刊): 51-54. (CHAI He-jun, LIU Han-chao, ZHANG Zhuo-yuan.The temporal-soatial distribution of damming landslides in China[J]. Journal of Mountain Science, 2000, 18(S0): 51-54. (in Chinese))