Analysis method for basal stability of braced excavations in clay based on undrained shear strength
HUANG Mao-song1,2, LI Yi-shan1,2, TANG Zhen1,2, YUAN Ju-yun1,2
1. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China; 2. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China
Abstract:At present, the analysis method for basal stability is mostly based on the consolidated undrained shear strength index. The method is unreasonable in theory for the soft clay and does not consider the strength of the soil above the lowest support. To solve the above problems, the traditional analysis method for basal stability is improved. The consolidated undrained shear strength index is converted into undrained shear strength, and the strength of the soil above the lowest support is considered. Furthermore, the circular arc mechanism of the upper bound limit analysis based on the undrained shear strength is proposed. Through the calculations of engineering cases, the factors of safety obtained by the traditional circular sliding method is generally high, while the results obtained by the proposed upper-bound solution are more reasonable.
黄茂松, 李弈杉, 唐震, 袁聚云. 基于不排水强度的黏土基坑抗隆起稳定计算方法[J]. 岩土工程学报, 2020, 42(9): 1577-1585.
HUANG Mao-song, LI Yi-shan, TANG Zhen, YUAN Ju-yun. Analysis method for basal stability of braced excavations in clay based on undrained shear strength. Chinese J. Geot. Eng., 2020, 42(9): 1577-1585.
[1] 郑刚, 程雪松. 考虑弧长和法向应力修正的基坑抗隆起稳定计算方法[J]. 岩土工程学报, 2012, 34(5): 781-789. (ZHENG Gang, CHENG Xue-song.Basal stability analysis method considering arc length and normal stress correction[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(5): 781-789. (in Chinese)) [2] 黄茂松, 宋晓宇, 秦会来. K0固结黏土基坑抗隆起稳定性上限分析[J]. 岩土工程学报, 2008, 30(2): 250-255. (HUANG Mao-song, SONG Xiao-yu, QIN Hui-lai.Basal stability of braced excavations in K0-consolidated soft clay by upper bound method[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(2): 250-255. (in Chinese)) [3] 黄茂松, 余生兵, 秦会来. 基于上限法的K0固结黏土基坑抗隆起稳定分析[J]. 土木工程学报, 2011, 44(3): 101-108. (HUANG Mao-song, YU Sheng-bing, QIN Hui-lai.Upper bound method for basal stability analysis of braced excavations in K0-consolidated clays[J]. China Civil Engineering Journal, 2011, 44(3): 101-108. (in Chinese)) [4] CHEN W F.Limit Analysis and Soil Plasticity[M]. Amsterdam: Elsevier Scientific, 1975. [5] CHANG M F.Basal stability analysis of braced cuts in clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2000, 126(3): 276-279. [6] HUANG M S, TANG Z, YUAN J Y.Basal stability analysis of braced excavations with embedded walls in undrained clay using the upper bound theorem[J]. Tunnelling and Underground Space Technology, 2018, 79: 231-241. [7] TERZAGHI K, PECK R B.Soil Mechanics in Engineering Practice[M]. New York: Wiley, 1948. [8] BJERRUM L, EIDE O.Stability of strutted excavations in clay[J]. Géotechnique, 1956, 6: 32-47. [9] 建筑基坑支护技术规程:JGJ 120—2012[S]. 2012. (Technical Specification for Retaining and Protection of Building Foundation Excavations:JGJ 120—2012[S]. 2002. (in Chinese)) [10] 建筑基坑工程技术规范:YB 9258—97[S]. 1998. (Code for Technique of Building Foundation Pit Engineering:YB 9258—97[S]. 1998. (in Chinese)) [11] 基坑工程技术标准(上海):DG/TJ08—61—2018[S]. 2018. (Technical Code for Excavation Engineering: DG/TJ08—61—2018[S]. 2018. (in Chinese)) [12] HSIEN P G, OU C Y, LIU H T.Basal heave analysis of excavations with consideration of anisotropic undrained strength of clay[J]. Can Geotech J, 2008, 45: 788-799. [13] 王洪新. 基坑的尺寸效应及考虑开挖宽度的抗隆起稳定安全系数计算方法[J]. 岩土力学, 2016, 37(增刊2): 433-441. (WANG Hong-xin.Size effect of foundation pits and calculation method of safety factor of heave-resistant stability considering excavation width[J]. Rock and Soil Mechanics, 2016, 37(S2): 433-441. (in Chinese)) [14] 应宏伟, 王小刚, 张金红. 考虑基坑宽度影响的基坑抗隆起稳定分析[J]. 工程力学, 2018, 35(5): 118-124. (YING Hong-wei, WANG Xiao-gang, ZHANG Jin-hong.Limit equilibrium analysis on stability against basal heave of excavation in anisotropy soft clay[J]. Engineering Mechanics, 2018, 35(5): 118-124. (in Chinese)) [15] 周建, 蔡露, 罗凌晖, 等. 各向异性软土基坑抗隆起稳定极限平衡分析[J]. 岩土力学, 2019, 40(12): 1-10. (ZHOU Jian, CAI Lu, LUO Ling-hui, et al.Limit equilibrium analysis on stability against basal heave of excavation in anisotropic soft clay[J]. Rock and Soil Mechanics, 2019, 40(12): 1-10. (in Chinese)) [16] CHEN R P, LI Z C, CHEN Y M, et al.Failure investigation at a collapsed deep excavation in very sensitive organic soft clay[J]. Journal of Performance of Constructed Facilities, 2015, 29(3): 04014078. [17] TUAN D, OU C Y, CHEN R P.A study of failure mechanisms of deep excavations in soft clay using the finite element method[J]. Computers and Geotechnics, 2016, 73: 153-163. [18] 沈珠江. 基于有效固结应力理论的黏土土压力公式[J]. 岩土工程学报, 2000, 22(3): 353-356. (SHEN Zhu-jiang.Soil pressure formula of clay based on effective consolidation stress theory[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(3): 353-356. (in Chinese)) [19] O'ROURKE T D.Base Stability and Ground Movement Prediction for Excavations in Soft Clay[M]// Retaining Structures. London: Thomas Telford, 1993: 131-139. [20] 张旷成, 李继民. 杭州地铁湘湖站“08.11.15”基坑坍塌事故分析[J]. 岩土工程学报, 2010, 32(增刊1): 338-342. (ZHANG Kuang-cheng, LI Ji-min.Accident analysis for“08.11.15”foundation pit collapse of Xianghu Station of Hangzhou metro[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(S1): 338-342. (in Chinese))