Influence of meso-structure heterogeneity on granite strength and deformation with particle flow code
HU Xun-jian1,2, BIAN Kang1,2, XIE Zheng-yong3, LIU Jian1,2, CHEN Ming1,2, LI Bing-yang1,2
1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Hubei Road and Bridge Group Tianxia Construction Co., Ltd., Wuhan 430000, China
Abstract:By reconstructing the meso-structure of granite using the particle flow software PFC2D based on the grain-based model, a series of conventional triaxial compression tests on granite under different confining pressures are carried out. The relationship between the heterogeneity of the meso-structure caused by crystal size distribution and the parameters of Mohr-Coulomb strength criterion and Hoek-Brown strength criterion as well as the brittleness of rock is revealed. The heterogeneity has a significant effect on the stress-strain curve of rock specimens under pressure loading. As the heterogeneity factor increases, the rock changes from homogeneous to heterogeneous, the elastic modulus decreases, and the Poisson's ratio increases. As the heterogeneity factor increases, the compressive strength of the rock decreases, the cohesive force increases, and the internal friction angle decreases. For the same type of granite, the values of the Mohr-Coulomb strength criterion and the Hoek-Brown strength criterion are not constant, but depend to some extent on the internal meso-structure. When the meso-structure of the rock changes, the parameters in the two strength criteria also change. The heterogeneity of the meso-structure has a great influence on the brittleness index of rock. With the increase of heterogeneity factor, the brittleness index decreases.
胡训健, 卞康, 谢正勇, 刘建, 陈明, 李冰洋. 细观结构的非均质性对花岗岩强度及变形影响的颗粒流模拟[J]. 岩土工程学报, 2020, 42(8): 1540-1548.
HU Xun-jian, BIAN Kang, XIE Zheng-yong, LIU Jian, CHEN Ming, LI Bing-yang. Influence of meso-structure heterogeneity on granite strength and deformation with particle flow code. Chinese J. Geot. Eng., 2020, 42(8): 1540-1548.
[1] WANG J.High-level radioactive waste disposal in China: update 2010[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2010, 2(1): 5-15. [2] 尤明庆. 围压对岩石试样强度的影响及离散性[J]. 岩石力学与工程学报, 2014, 33(5): 929-937. (YOU Ming-qing.Effect of confining pressure on strength scattering of rock specimen[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(5): 929-937. (in Chinese)) [3] TANG C A, LIU H, LEE P, et al.Numerical studies of the influence of microstructure on rock failure in uniaxial compression-Part I:Effect of heterogeneity[J]. International Journal of Rock Mechanics & Mining Sciences, 2000, 37(4): 555-569. [4] LAN H, MARTIN C D, HU B.Effect of heterogeneity of brittle rock on micromechanical extensile behavior during compression loading[J]. Journal of Geophysical Research Solid Earth, 2010, 115, B01202. [5] POTYONDY D O.A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329-1364. [6] POTYONDY D O. A grain-based model for rock: approaching the true microstructure[C]// Proceedings of the Rock Mechanics in the Nordic Countries, 2010, Kongsberg: 225-234. [7] 胡训健, 卞康, 刘建, 等. 细观结构的非均质性对花岗岩蠕变特性影响的离散元模拟研究[J]. 岩石力学与工程学报, 2019, 38(10): 2069-2083. (HU Xun-jian, BIAN Kang, LIU Jian, et al.Discrete element simulation study on the influence of microstructure heterogeneity on the creep characteristics of granite[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(10): 2069-2083. (in Chinese)) [8] PENG J, WONG L N Y, TEH C I. Influence of grain size heterogeneity on strength and microcracking behavior of crystalline rocks[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(2): 1054-1073. [9] LIU G, CAI M, HUANG M.Mechanical properties of brittle rock governed by micro-geometric heterogeneity[J]. Computers and Geotechnics, 104: 358-372. [10] 水利水电工程岩石试验规程:SL264—2001[S]. 2001. (Rock Test Regulations for Water Conservancy and Hydropower Engineering: SL264—2001[S]. 2001. (in Chinese)) [11] HOEK E, BROWN E T.Empirical strength criterion for rock masses[J]. ASCE Journal of Geotechnical Engineering Division, 1980, 106(GT9): 1013-1035. [12] MARTIN C D, CHANDLER N A.The progressive fracture of Lac du Bonnet granite[J]. International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts, 1994, 31(6): 643-659. [13] ZHANG Q, ZHU H H, ZHANG L Y, et al. Effect of micro-parameters on the Hoek-Brown strength parameter mi for intact rock using particle flow modeling[C]// The 46th US Rock Mechanics Geomechanics Symposium, 2012, Chicago: 2187-2193. [14] 周辉, 孟凡震, 刘海涛, 等. 花岗岩脆性破坏特征与机制试验研究[J]. 岩石力学与工程学报, 2014, 33(9): 1822-1827. (ZHOU Hui, MENG Fan-zhen, LIU Hai-tao, et al.Experimental study on characteristics and mechanism of brittle failure of granite[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(9): 1822-1827. (in Chinese)) [15] MARTIN C D.The Strength of Massive Lac du Bonnet Granite Around Underground Opening[D]. Winnipeg: University of Manitoba, 1993. [16] ZHOU J, LAN H X, ZHANG L Q, et al.Novel grain-based model for simulation of brittle failure of Alxa porphyritic granite[J]. Engineering Geology, 2019, 251: 100-114. [17] Itasca Consulting Group Inc. PFC,Version 5.0[M]. Minneapolis: Itasca Consulting Group Inc., 2014: 1-2. [18] JI P Q, ZHANG X P, ZHANG Q.A new method to model the non-linear crack closure behavior of rocks under uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 112: 171-183. [19] 陈国庆, 赵聪, 魏涛, 等. 基于全应力-应变曲线及起裂应力的岩石脆性特征评价方法[J]. 岩石力学与工程学报, 2018, 37(1): 51-59. (CHEN Guo-qing, ZHAO Cong, WEI Tao, et al.Evaluation method of rock brittle characteristics based on full stress-strain curve and crack initiation stress[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1): 51-59. (in Chinese)) [20] 李斌. 高围压条件下岩石破坏特征及强度准则研究[D]. 武汉: 武汉科技大学, 2015. (LI Bin.Study on Rock Failure Characteristics and Rock Strength Criteria under High Confining Pressure[D]. Wuhan: Wuhan University of Science and Technology, 2015. (in Chinese)) [21] LUAN X, DI B, WEI J, et al.Laboratory measurements of brittleness anisotropy in synthetic shale with different cementation[C]// Proceedings of the 2014 SEG Annual Meeting. Denver, Society of Exploration Geophysicists, 2014: 3005-3009. [22] HUCKA V, DAS B.Brittleness determination of rocks by different methods[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1974, 11(10): 389-392. [23] 韩振华, 张路青, 周剑, 等. 矿物粒径对花岗岩单轴压缩特性影响的试验与模拟研究[J]. 工程地质学报, 2019, 27(3): 497-504. (HAN Zhen-hua, ZHANG Lu-qing, ZHOU Jian, et al.Uniaxial compression test and numerical studies of grain size effect on mechanical properties of granite[J]. Journal of Engineering Geology, 2019, 27(3): 497-504. (in Chinese))