Review and research on osmotic suction of saturated saline soils
ZHOU Feng-xi1,2, WANG Li-ye1, LAI Yuan-ming2
1. School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China; 2. State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Abstract:In order to accurately calculate the osmotic suction in saturated saline soils under different salt contents, salt types and temperature conditions, firstly, a brief review is made of the research results of osmotic suction from the test and theoretical aspects. Secondly, through the electrical conductivity tests on sodium chloride and sodium sulfate solution under different temperature conditions, the relationship between the soil osmotic suction and the concentration after saturation of the two solutions is discussed. Finally, based on the fractal theory and solute ionization degree, the EC model and van't Hoff equation are improved, respectively, and the improved model is analyzed numerically. The test results show that the osmotic suction of the soil after sodium chloride saturation has an increase of power function with the concentration, while the osmotic suction of the soil after sodium sulphate exponentially increases with concentration. Therefore, the osmotic suction of sulphate saline soil is higher than that of chlorine saline soil at first, while that of chlorine saline soil is higher than that of sulphate saline soil after a certain concentration, and the concentration value mA of intersection point A increases linearly with the increase of temperature. The numerical analysis results show that the improved model can calculate the osmotic suction under complex conditions and is superior to the traditional models.
周凤玺, 王立业, 赖远明. 饱和盐渍土渗透吸力的回顾及研究[J]. 岩土工程学报, 2020, 42(7): 1199-1210.
ZHOU Feng-xi, WANG Li-ye, LAI Yuan-ming. Review and research on osmotic suction of saturated saline soils. Chinese J. Geot. Eng., 2020, 42(7): 1199-1210.
[1] GENS A.Soil-environment interactions in geotechnical engineering[J]. Géotechnique, 2010, 60(1): 3-74. [2] NIXON J F, LEM G.Creep and strength testing of frozen saline fine-grained soils[J]. Canadian Geotechnical Journal, 1984, 21(3): 518-529. [3] 高红波, 梁卫国, 杨晓琴, 等. 高温盐溶液浸泡作用下石膏岩力学特性试验研究[J]. 岩石力学与工程学报, 2011, 30(5): 935-943. (GAO Hong-bo, LIANG Wei-guo, YANG Xiao-qin, et al.Experimental study of mechanical property of gypsum rock soaked in hot saturated brine[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(5): 935-943. (in Chinese)) [4] WITTEVEEN P, FERRARI A, LALOUI L.An experimental and constitutive investigation on the chemo-mechanical behaviour of a clay[J]. Géotechnique, 2013, 63(3): 244-255. [5] 张彤炜, 邓永锋, 刘松玉, 等. 渗透吸力对重塑黏土的压缩和渗透特性影响的试验研究[J]. 岩土工程学报, 2014, 36(12): 2260-2266. (ZHANG Tong-wei, DENG Yong-feng, LIU Song-yu, et al.Experimental investigation of osmotic suction effect on hydro-mechanical behaviour of remolded clay[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2260-2266. (in Chinese)) [6] 颜荣涛, 纪文栋, 陈星欣, 等. 盐溶液饱和黏土的力学行为模拟[J]. 岩土力学, 2018, 39(2): 546-552. (YAN Rong-tao, JI Wen-dong, CHEN Xing-xin, et al.Modeling mechanical behaviors of clayey soil saturated by salt solution[J]. Rock and Soil Mechanics, 2018, 39(2): 546-552. (in Chinese)) [7] LORET B, HUECKEL T, GAJO A.Chemo-mechanical coupling in saturated porous media: elastic-plastic behaviour of homoionic expansive clays[J]. International Journal of Solids & Structures, 2002, 39(10): 2773-2806. [8] MATA C, ROMERO E, LEDESMA A.Hydro-chemical effects on water retention in bentonite-sand mixtures[C]// Proceedings of the 3rd International Conference on Unsaturated Soil. Recife, Brazil: Swets & Zeitlinger, 2002: 283-288. [9] RAO M S, SHIVANANDA P.Role of osmotic suction in swelling of salt-amended clays[J]. Canadian Geotechnical Journal, 2005, 42(1): 307-315. [10] ARIFIN Y F, SCHANZ T.Osmotic suction of highly plastic clays[J]. Acta Geotechnica, 2009, 4(3): 177-191. [11] GLASSTONE S.Textbook of Physical Chemistry[M]. 2nd ed. New Delhi: Macmillan India, 1974. [12] XU Y F, XIANG G S, JIANG H, et al.Role of osmotic suction in volume change of clays in salt solution[J]. Applied Clay Science, 2014, 101: 354-361. [13] 周凤玺, 王立业, 赖远明. 饱和盐渍土的一维蠕变试验与模型研究[J]. 岩土工程学报, 2020, 42(1): 142-149. (ZHOU Feng-xi, WANG Li-ye, LAI Yuan-ming.One-dimensional creep test and model study on saturated saline soil[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 142-149. (in Chinese)) [14] 王立业, 周凤玺, 秦虎. 饱和盐渍土分数阶蠕变模型及试验研究[J]. 岩土力学, 2020, 41(2): 543-551. (WANG Li-ye, ZHOU Feng-xi, QIN Hu.Fractional creep model and experimental study of saturated saline soil[J]. Rock and Soil Mechanics, 2020, 41(2): 543-551. (in Chinese)) [15] BOLT G H, MILLER R D.Compression studies of illite suspensions1[J]. Soil Science Society of America Journal, 1955, 19(3): 285-288. [16] BOLT G H.Physico-chemical analysis of the compressibility of pure clays[J]. Géotechnique, 1956, 6(2): 86-93. [17] MESRI G, OLSON R E.Consolidation characteristics of montmorillonite[J]. Géotechnique, 1971, 21(21): 341-352. [18] SRIDHARAN A, RAO G V.Mechanisms controlling volume change of saturated clays and the role of the effective stress concept[J]. Géotechnique, 1973, 23(3): 359-382. [19] SRIDHARAN A, RAO G V.Shear strength behaviour of saturated clays and the role of the effective stress concept[J]. Géotechnique, 1979, 29(2): 177-193. [20] MARINE I W, FRITZ S J.Osmotic model to explain anomalous hydraulic heads[J]. Water Resources Research, 1981, 17(1): 73-82. [21] FRITZ S J.Ideality of clay membranes in osmotic processes: a review[J]. Clays and Clay Minerals, 1986, 34(2): 214-223. [22] GAJO A, LORET B, HUECKEL T.Electro-chemo- mechanical couplings in saturated porous media: Elastic-plastic behaviour of heteroionic expansive clays[J]. International Journal of Solids and Structures, 2002, 39(16): 4327-4362. [23] GAJO A, LORET B.Finite element simulations of chemo-mechanical coupling in elastic-plastic homoionic expansive clays[J]. Computer Methods in Applied Mechanics and Engineering, 2003, 192(31/32): 3489-3530. [24] GUIMARAES L D N, GENS A, OLIVELLA S. Coupled thermo-hydro-mechanical and chemical analysis of expansive clay subjected to heating and hydration[J]. Transport in Porous Media, 2007, 66(3): 341-372. [25] WEI C F.A theoretical framework for modeling the chemomechanical behavior of unsaturated soils[J]. Vadose Zone Journal, 2014, 13(9): 1-21. [26] FREDLUND, RAHARDJO D G. Soil Mechanics for Unsaturated Soils[M]. New York: Wiley, 1993. [27] TRIPATHY S, LEONG E C, RAHARDJO H.Total suction measurement of unsaturated soils with a device using the chilled-mirror dew-point technique[J]. Géotechnique, 2003, 53(2): 173-182. [28] PERONI N, TARANTINO A.Measurement of Osmotic Suction Using the Squeezing Technique[M]// Unsaturated Soils: Experimental Studies, 2005. [29] LEONG E C, TRIPATHY S, RAHARDJO H.Total suction measurement of unsaturated soils with a device using the chilled-mirror dew-point technique[J]. Géotechnique, 2003, 53(2): 173-182. [30] CARDOSO R, ROMERO E, LIMA A, et al.A Comparative Study of Soil Suction Measurement Using Two Different High-Range Psychrometers[M]. Heidelberg: Springer Berlin, 2007. [31] USDA. Agriculture handbook 60, Diagenesis and Improvement of Saline and Alkali Soils[M]. California: United States Salinity Laboratory, 1954. [32] RAO S, REVANASIDDAPPA K.Role of soil structure and matric suction in collapse of a compacted clay soil[J]. Geotechnical Testing Journal, 2003, 26(1): 1-9. [33] RAO S M, THYAGARAJ T.Swell-compression behaviour of compacted clays under chemical gradients[J]. Canadian Geotechnical Journal, 2007, 44(5): 520-532. [34] USDA. Agricultural Handbook 60, Diagnosis and Improvement of Saline and Alkali Soils[M]. Washington D C: United States Salinity Laboratory, 1950. [35] IYER B, HODDINOTT K B, LAMB R O.Pore Water Extraction-Comparison of Saturation Extract and High- Pressure Squeezing[M]. Philadelphia: American Society for Testing and Materials, 1990: 159-170. [36] SACCHI E, MICHELOT J L, PITSCH H, et al.Extraction of water and solutes from argillaceous rocks for geochemical characterisation: Methods, processes and current understanding[J]. Hydrogeology Journal, 2001, 9(1): 17-33. [37] MANHEIM F T.A Hydraulic Squeezer for Obtaining Interstitial Water from Consolidated and Unconsolidated Sediments[R]. Virginia: US Geological Survey, 1966: 256-261. [38] ENGELHARDT W V, GAIDA K H.Concentration changes of pore solutions during compaction of clay sediments[J]. Journal of Sedimentary Research, 1963, 33(4): 919-930. [39] MARIANO A D, AIRÒ F C, VALORE C. Retention curves and 1-D behaviour of a compacted tectonised unsaturated clay[C]// International Workshop on Unsaturated Soils, 2000, Rotterdam. [40] KRAHN J, FREDLUND D G.On total, matric and osmotic suction[J]. Soil Science, 1972, 114(5): 339-348. [41] RIDLEY A M, WRAY W K. Suction measurement: a review of current theory and practices[C]// International Conference on Unsaturated Soils/UNSAT 95, 1996, Paris: 1293-1322. [42] van’t HOFF J H. Die rolle des osmotischen druckes in der analogie zwischen lösungen und gasen[J]. Zeitschrift Für Physikalische Chemie, 1887, 1(1): 481-508. (van’t HOFF J H. The role of osmotic pressure in the analogy between solutions and gases[J]. Zeitschrift Für Physikalische Chemie, 1887, 1(1): 481-508. (in Germany)) [43] MEYER L. Über das wesen des osmotischen druckes[J]. Zeitschrift Für Physikalische Chemie, 1889, 5(1): 174-176. (MEYER L. About the essence of osmotic printing[J]. Zeitschrift Für Physikalische Chemie, 1889, 5(1): 174-176. (in Germany)) [44] LAAR van J J. Zur Thermodynamik der elektrolytischen Dissociation[J]. Zeitschrift für Physikalische Chemie, 1982, 10U(1): 242-254. (LAAR van J J. The thermodynamics of electrolytic dissociation[J]. Zeitschrift für Physikalische Chemie, 1982, 10U(1): 242-254. (in Germany)) [45] DAO V N T, MORRIS P H, DUX P F. On equations for the total suction and its matric and osmotic components[J]. Cement and Concrete Research, 2008, 38(11): 1302-1305. [46] T M L.Osmotic pressure or osmotic suction?[J]. Nature, 1916, 97(2423): 122-123. [47] GRASLEY Z C, RAJAGOPAL K R.Revisiting total, matric, and osmotic suction in partially saturated geomaterials[J]. Zeitschrift für angewandte Mathematik und Physik, 2012, 63(2): 373-394. [48] SPOSITO G.The Thermodynamics of Soil Solution[M]. Oxford: Oxford University Press, 1981. [49] SUN D A, CUI H, SUN W.Swelling of compacted sand-bentonite mixtures[J]. Applied Clay Science, 2009, 43(3/4): 485-492. [50] LANG A R G. Osmotic coefficients and water potential of sodium chloride solutions from 0 to 40 degrees C[J]. Australian Journal of Chemistry, 1967, 20(9): 2017-2023. [51] PITZER K S.Thermodynamics of electrolytes: I theoretical basis and general equations[J]. The Journal of Physical Chemistry B, 1973, 77(2): 268-277. [52] PITZER K S, MAYORGA G.Thermodynamics of electrolytes: II activity and osmotic coefficients for strong electrolytes with one or both ions univalent[J]. The Journal of Physical Chemistry, 1973, 77(19): 2300-2308. [53] BARBOUR S L, FREDLUND D G.Mechanisms of osmotic flow and volume change in clay soils[J]. Canadian Geotechnical Journal, 1989, 26(4): 551-562. [54] KIM H T, FREDERICK W J.Evaluation of Pitzer ion interaction parameters of aqueous electrolytes at 25℃: 1 Single salt parameters[J]. Journal of Chemical & Engineering Data, 1988, 33(2): 177-184. [55] 蒋明镜. 现代土力学研究的新视野——宏微观土力学[J]. 岩土工程学报, 2019, 41(2): 195-254. (JIANG Ming-jing.New paradigm for modern soil mechanics: Geomechanics from micro to macro[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 195-254. (in Chinese)) [56] WYLLIE M R J, ROSE W. Some theoretical considerations related to the quantitative evaluation of the physical characteristics of reservoir rock from electrical log data[J]. Journal of Petroleum Technology, 1950, 2(4): 105-118. [57] ARCHIE G E.The electrical resistivity log as an aid in determining some reservoir characteristics[J]. Transactions of the AIME, 146(1): 54-62. [58] GHANBARIAN B, HUNT A G, EWING R P, et al.Tortuosity in porous media: a critical review[J]. Soil Science Society of America Journal, 2013, 77(5): 1461-1477. [59] COLEMAN S W, VASSILICOS J C.Transport properties of saturated and unsaturated porous fractal materials[J]. Physical Review Letters, 2008, 100(3):035504. [60] WEI W, CAI J C, HU X Y, et al.An electrical conductivity model for fractal porous media[J]. Geophysical Research Letters, 2015, 42(12): 4833-4840. [61] MENG H, SHI Q, LIU T Y, et al.The percolation properties of electrical conductivity and permeability for fractal porous media[J]. Energies, 2019, 12(6): 1-15. [62] BATES S J.Osmotic pressure and concentration in solutions of electrolytes, and the calculation of the degree of ionization[J]. Journal of the American Chemical Society, 2002, 37(6): 1421-1445.