Accumulative displacement of long-term cyclic laterally loaded monopiles with large diameter sand
ZHANG Chen-rong1,2, ZHU Zhi-qi1,2,3, YU Feng1,2, WANG Bo-wei4, HUANG Mao-song1,2
1. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China; 2. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China; 3. CITIC Construction Co., Ltd., Beijing 100027, China; 4. Shanghai Green Environmental Protection Energy Co., Ltd., Shanghai 200433, China
Abstract:The accumulative displacement of offshore wind power under long-term cyclic lateral loads from wind and wave loads attracts a lot of attention, for it may lead to the malfunction of a wind turbine. Considering the cyclic loading characteristics of sandy soil around piles, the lateral cyclic response of monopile for offshore wind power is investigated. The R-O loading curve and modified Masing rule are used to construct loading and unloading stress-strain curves of sand. Based on the explicit equation for cyclic accumulative axial strain of sand, a cyclic evolution model for secant stiffness of sand is derived, and it is applied in the FE analysis. By comparing with the published centrifuge test results of a laterally loaded monopile in sand, the rationality of the evolution model is verified. A parametric analysis considering different embedment lengths of the pile is also undertaken. It is believed that the FE analysis with the evolution model for secant stiffness of sand can rationally simulate the development of the accumulative rotation of a horizontal cyclic loaded monopile, which provides theoretical support for the design of the cyclic response of wind turbines.
[1] ARANY L, BHATTACHARYA S, MACDONALD J, et al.Design of monopiles for offshore wind turbines in 10 steps[J]. Soil Dynamics and Earthquake Engineering, 2017, 92: 126-152. [2] LITTLE RL, BRIAUD JL.Full Scale Cyclic Lateral Load Tests on Six Single Piles in Sand (No. TAMU-RR-5640)[R]. Texas: College Station, 1988. [3] LONG J, VANNESTE G.Effects of cyclic lateral loads on piles in sand[J]. Journal of Geotechnical Engineering, 1994, 120(1): 225-244. [4] LIN S S, LIAO J C.Permanent strains of piles in sand due to cyclic lateral loads[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(9): 798-802. [5] LEBLANC C, HOULSBY G T, BYRNE B W.Response of stiff piles in sand to long-term cyclic lateral loading[J]. Géotechnique, 2010, 60(2): 79-90. [6] CHEN R P, SUN Y X, ZHU B, et al.Lateral cyclic pile-soil interaction studies on a rigid model monopile[J]. Proceedings of the ICE - Geotechnical Engineering, 2015, 168(2): 120-130. [7] ZHU B, BYRNE B W, HOULSBY G T.Long-term lateral cyclic response of suction caisson foundations in sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(1): 73-83. [8] ZHANG C, ZHANG X, HUANG M, et al.Responses of caisson-piles foundations to long-term cyclic lateral load and scouring[J]. Soil Dynamics and Earthquake Engineering, 2019, 119: 62-74. [9] ZHU F Y, O’LOUGHLIN C D, BIENEN B, et al. The response of suction caissons to long-term lateral cyclic loading in single-layer and layered seabeds[J]. Géotechnique, 2018, 68(8): 729-741. [10] ALLOTEY N, EL NAGGAR M H. A numerical study into lateral cyclic nonlinear soil-pile response[J]. Canadian Geotechnical Journal, 2008, 45(9): 1268-1281. [11] HEIDARI M, JAHANANDISH M, EL NAGGAR H, et al.Nonlinear cyclic behavior of laterally loaded pile in cohesive soil[J]. Canadian Geotechnical Journal, 2014, 51(2): 129-143. [12] MEMARPOUR M M, KIMIAEI M, SHAYANFAR M, et al.Cyclic lateral response of pile foundations in offshore platforms[J]. Computers and Geotechnics, 2012, 42: 180-192. [13] GIANNAKOS S, GEROLYMOS N, GAZETAS G.Cyclic lateral response of piles in dry sand: finite element modeling and validation[J]. Computers and Geotechnics, 2012, 44: 116-131. [14] BOURGEOIS E, RAKOTONINDRIANA M H J, LE KOUBY A, et al. Three-dimensional numerical modelling of the behaviour of a pile subjected to cyclic lateral loading[J]. Computers and Geotechnics, 2010, 37(7/8): 999-1007. [15] ACHMUS M, KUO Y S, ABDEL-RAHMAN K.Behavior of monopile foundations under cyclic lateral load[J]. Computers and Geotechnics, 2009, 36(5): 725-735. [16] DEPINA I, LE T M H, EIKSUND G, ET AL. Behavior of cyclically loaded monopile foundations for offshore wind turbines in heterogeneous sands[J]. Computers and Geotechnics, 2015, 65: 266-277. [17] RAMBERG W, OSGOOD W R.Description of stress-strain curves by three parameters[J]. National Advisory Committee for Aeronautics, 1943: 902. [18] MASING G. Eigenspannungeu und verfertigung beim Messing[C]// Proceedings of the 2nd International Congress on Applied Mechanics, 1926, Zurich. [19] PYKE R M.Nonlinear soil models for irregular cyclic loadings[J]. Journal of Geotechnical Engineering Division, 1979, 105(6): 715-726. [20] 朱治齐. 砂土中大直径单桩的长期水平循环累积变形研究[M]. 上海: 同济大学, 2018. (ZHU Zhi-qi.Long-Term Displacement Accumulation of Cyclic Laterally Loaded Monopile in Sand[D]. Shanghai: Tongji University, 2018. (in Chinese)) [21] 黄茂松, 李进军, 李兴照. 饱和软粘土的不排水循环累积变形特性[J]. 岩土工程学报, 2006, 28(7): 891-895. (HUANG Mao-song, LI Jin-jun, LI Xing-zhao.Cumulative deformation behaviour of soft clay in cyclic undrained tests[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(7): 891-895. (in Chinese)) [22] BOLTON M D.The strength and dilatancy of sands[J]. Géotechnique, 1986, 36(1): 65-78. [23] PASTEN C, SHIN H, SANTAMARINA J C.Long-term foundation response to repetitive loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(4): 04013036. [24] NIEMUNIS A. WICHTMANN T, TRIANTAFYLLIDIS T H.A high-cycle accumulation model for sand[J]. Computers and Geotechnics, 2015, 32(4): 245-263. [25] ZHU B, LI T, XIONG G, et al.Centrifuge model tests on laterally loaded piles in sand[J]. International Journal of Physical Modelling in Geotechnics, 2016, 16(4): 160-172. [26] 王磊, 朱斌, 来向华. 砂土循环累积变形规律与显式计算模型研究[J]. 岩土工程学报, 2015, 37(11): 2024-2029. (WANG Lei, ZHU Bin, LAI Xiang-hua.Cyclic accumulative deformation of sand and its explicit model[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11): 2024-2029. (in Chinese))