Particle breakage characteristics of rockfill materials and correction of Wan-Guo hardening rule
SUN Da-wei1,2, ZHANG Liang1,2, XU Zhi-hua1,2, ZHANG Guo-dong1,2
1. Hubei Key Laboratory of Disaster Prevention and Mitigation, Yichang 443002, China; 2. Key Laboratory of Geological Hazards on Three Gorges Reservoir Area (China Three Gorges University), Ministry of Education, Yichang 443002, China
Abstract:The particle breakage problem of super-high rockfill dams is a hot issue in the current researches. For the rockfill materials of the world's highest concrete faced rockfill dam, Shuibuya Dam, the consolidated drained tri-axial tests with the maximum deformation of 25% are carried out, and 31 high-quality test curves are obtained. On this basis, the power function relationship between the critical shear stress and the mean stress is yielded, so is the relationship between the particle breakage ratio and the confining pressure. The logarithmic function relationship between the critical state stress ratio and the confining pressure is obtained. The test data reveal that obvious particle breakage of the rockfill materials happens under high or super high pressures. The particle size of many rockfill materials becomes smaller and its grading curve changes, which induces the shear stress and axial strain test curve to bend down. Therefore, the criterion for the critical state of rockfill materials under high confining pressures must be “strain unchanged volumetric” rather than “shear stress unchanged”. Finally, the Wan-Guo hardening rule of Rowe’s stress dilatancy equation is modified by use of the breakage factor term.
[1] 郦能惠. 高混凝土面板堆石坝新技术[M]. 北京: 中国水利水电出版社, 2007. (LI Neng-hui.New Technique of High Concrete Faced Rockfill Dam[M]. Beijing: China Water Power Press, 2007. (in Chinese)) [2] 孙海忠, 黄茂松. 考虑颗粒破碎的粗粒土临界状态弹塑性本构模型[J]. 岩土工程学报, 2010, 32(8): 1284-1290. (SUN Hai-zhong, HUANG Mao-song.Critical state elasto-plastic model for coarse granular aggregates incorporating particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(8): 1284-1290. (in Chinese)) [3] HU W, YIN Z Y, DANO C, et al.A constitutive model for granular materials considering grain breakage[J]. Science China, 2011, 54(8): 2188-2196. [4] 姚仰平, 黄冠, 王乃东, 等. 堆石料的应力-应变特性及其三维破碎本构模型[J]. 工业建筑, 2011, 41(9): 12-18. (YAO Yang-ing, HUANG Guan, WANG Nai-dong, et al.Stress-strain characteristic and three-dimensional constitutive model of rockfill considering crushing[J]. Industrial Construction, 2011, 41(9): 12-18. (in Chinese)) [5] 陈生水, 傅中志, 韩华强, 等. 一个考虑颗粒破碎的堆石料弹塑性本构模型[J]. 岩土工程学报, 2011, 33(10): 1489-1495. (CHEN Sheng-shui, FU Zhong-zhi, HAN Hua-qiang, et al.An elastoplastic model for rockfill materials considering particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1489-1495. (in Chinese)) [6] 刘恩龙, 陈生水, 李国英, 等. 堆石料的临界状态与考虑颗粒破碎的本构模型[J]. 岩土力学, 2011, 32(增刊2): 148-154. (LIU En-long, CHEN Sheng-shui, LI Guo-ying, et al.Critical state of rockfill materials and a constitutive model considering grain crushing[J]. Rock and Soil Mechanics, 2011, 32(S2): 148-154. (in Chinese)) [7] 米占宽, 李国英, 陈生水.基于破碎能耗的粗颗粒料本构模型[J]. 岩土工程学报, 2012, 34(10): 1801-1811. (MI Zhan-kuan, LI Guo-ying, CHEN Sheng-shui.Constitutive model for coarse granular materials based on breakage energy[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1801-1811. (in Chinese)) [8] LIU H, ZOU D.Associated generalized plasticity framework for modeling gravelly soils considering particle breakage[J]. Journal of Engineering Mechanics, 2013, 139(5): 606-615. [9] 朱晟, 魏匡民, 林道通. 筑坝土石料的统一广义塑性本构模型[J]. 岩土工程学报, 2014, 36(8): 1394-1399. (ZHU Sheng, WEI Kuang-min, LIN Dao-tong.Generalized plasticity model for soil and coarse-grained dam materials[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1394-1399. (in Chinese)) [10] 王占军, 陈生水, 傅中志. 堆石料的剪胀特性与广义塑性本构模型[J]. 岩土力学, 2015, 36(7): 1931-1938. (WANG Zhan-jun, CHEN Sheng-shui, FU Zhong-zhi.Dilatancy behaviors and generalized plasticity constitutive model of rockfill materials[J]. Rock and Soil Mechanics, 2015, 36(7): 1931-1938. (in Chinese)) [11] 魏匡民, 陈生水, 李国英, 等. 基于状态参数的筑坝粗粒土本构模型[J]. 岩土工程学报, 2016, 38(4): 654-661. (WEI Kuang-min, CHEN Sheng-shui, LI Guo-ying, et al.Constitutive model for coarse-grained dam materials considering state parameter[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 654-661. (in Chinese)) [12] 殷志祥, 高哲, 张建成, 等. 考虑颗粒破碎引起级配演变的道砟边界面本构模型[J]. 岩土力学, 2017, 38(9): 2669-2675. (YIN Zhi-xiang, GAO Zhe, ZHANG Jian-cheng, et al.Boundary surface model for railway ballast considering gradation evolution caused by particle breakage[J]. Rock and Soil Mechanics, 2017, 38(9): 2669-2675. (in Chinese)) [13] 卞士海, 李国英, 魏匡民, 等. 堆石料广义塑性模型研究[J]. 岩土工程学报, 2017, 39(6): 996-1003. (BIAN Shi-hai, LI Guo-ying, WEI Kuang-min, et al.Generalized plasticity model for rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 996-1003. (in Chinese)) [14] 方火浪, 蔡云惠, 王文杰. 堆石料状态相关三维多重机制边界面模型[J]. 岩土工程学报, 2018, 40(12): 2164-2171. (FANG Huo-lang, CAI Yun-hui, WANG Wen-jie.State-dependent 3D multi-mechanism bounding surface model for rockfills[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2164-2171. (in Chinese)) [15] 张凌凯, 王睿, 张建民, 等. 考虑颗粒破碎效应的堆石料静动力本构模型[J]. 岩土力学, 2019, 40(7): 2547-2554, 2562. (ZHANG Ling-kai, WANG Rui, ZHANG Jian-min, et al.A static and dynamic constitutive model of rockfill material considering particle breakage[J]. Rock and Soil Mechanics, 2019, 40(7): 2547-2554, 2562. (in Chinese)) [16] 蔡正银, 李小梅, 韩林, 等. 考虑级配和颗粒破碎影响的堆石料临界状态研究[J]. 岩土工程学报, 2016, 38(8): 1357-1364. (CAI Zheng-yin, LI Xiao-mei, HAN Lin, et al.Critical state of rockfill materials considering particle gradation and breakage[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1357-1364. (in Chinese)) [17] 张丙印, 贾延安, 张宗亮. 堆石体修正Rowe剪胀方程与南水模型[J]. 岩土工程学报, 2007, 29(10): 1443-1448. (ZHANG Bing-yin, JIA Yan-an, ZHANG Zong-liang.Modified Rowe’s dilatancy law of rockfill and Shen Zhujiang’s double yield surfaces elastoplastic model[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(10): 1443-1448. (in Chinese)) [18] WAN R G, GUO. A pressure and density dependence dilatancy model for granular materials[J]. Soils and Foundations, 1999, 39(6): 1-11. [19] WAN R G, GUO. A simple constitutive model for granular soils:modified stress-dilatancy approach[J]. Computers and Geotechnics, 1998, 22(2): 109-133. [20] 李广信. 高等土力学[M]. 北京: 清华大学出版社, 2004: 69-82. (LI Guang-xin.Advanced Soil Mechanics[M]. Beijing: Tsinghua University Press, 2004. (in Chinese)) [21] 孔宪京, 宁凡伟, 刘京茂, 等. 应力路径和干湿状态对堆石料颗粒破碎的影响研究[J]. 岩土力学, 2019, 40(6): 2059-2065. (KONG Xian-jing, NING Fan-wei, LIU Jing-mao, et al.Influences of stress paths and saturation on particle breakage of rockfill materials[J]. Rock and Soil Mechanics, 2019, 40(6): 2059-2065. (in Chinese))