Multi-stratigraphic centrifugal model test method for determination of self-weight collapsible deformation of loess
MI Wen-jing1,2, ZHANG Ai-jun1, LIU Zhen-hong3, LIU Hong-tai3
1. College of Water Resources and Architectural Engineering Northwest A&F University, Yangling 712100, China; 2. Shangluo University, Shangluo 726000, China; 3. Machine Industry Investigation Design Institute Co., Ltd., Xi'an 710000, China
Abstract:The self-weight collapsible deformation of loess is harmful to the upper buildings. The existing indoor collapsibility and on-site water immersion test method for loess are difficult to satisfy the requirements of the project construction in terms of the economy, duration and accuracy of the test results. Based on the typical-stratigraphic centrifugal model test method, with the self-weight collapsible loess foundation of Buli Village, Weicheng District, Xianyang City as the object, a multi-stratigraphic centrifugal model test method for determination of loess self-weight collapsible deformation is proposed, and the results of the indoor collapsibility tests and on-site water immersion tests are compared. The stratified deformation characteristics of Q2 and Q3 loess self-weight collapsibility are also analyzed. The results show that the value of the regional correction coefficient obtained from the multi-stratigraphic centrifugal model test is different from that obtained from the on-site water immersion tests with a difference of 0.04, and the relative error is 2.5%. It is proved that the multi-stratigraphic centrifugal model test method can be used to obtain similar results with the on-site water immersion test, and has the advantages of low cost and short test cycle. Thus, under some circumstances, it can replace the on-site immersion tests to determine the self-weight collapsible deformation of loess.
米文静, 张爱军, 刘争宏, 刘宏泰. 黄土自重湿陷变形的多地层离心模型试验方法[J]. 岩土工程学报, 2020, 42(4): 678-687.
MI Wen-jing, ZHANG Ai-jun, LIU Zhen-hong, LIU Hong-tai. Multi-stratigraphic centrifugal model test method for determination of self-weight collapsible deformation of loess. Chinese J. Geot. Eng., 2020, 42(4): 678-687.
[1] 李涛, 蒋明镜, 张鹏. 非饱和结构性黄土侧限压缩和湿陷试验三维离散元分析[J]. 岩土工程学报, 2018, 40(增刊1): 39-44. (LI Tao, JIANG Ming-jing, ZHANG Peng.DEM analyses of oedometer and wetting tests on unsaturated structured loess[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 39-44. (in Chinese)) [2] 杨玉生, 李靖, 邢义川, 等. 压实黄土增湿变形性质及其影响因素试验研究[J]. 岩土工程学报, 2017, 39(4): 626-635. (YANG Yu-sheng, LI Jing, XING Yi-chuan, et al.Experimental study on moistening deformation characteristics of compacted loess and their influencing factors[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 626-635. (in Chinese)) [3] 张爱军, 邢义川, 胡新丽, 等. 伊犁黄土强烈自重湿陷性的影响因素分析[J]. 岩土工程学报, 2016, 38(增刊2): 117-122. (ZHANG Ai-jun, XING Yi-chuan, HU Xin-li, et al.Influence factors of strong self-weight collapsibility of Ili loess[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(S2): 117-122. (in Chinese)) [4] 张爱军, 王毓国, 邢义川, 等. 伊犁黄土总吸力和基质吸力土水特征曲线拟合模型[J]. 岩土工程学报, 2019, 41(6): 1040-1049. (ZHANG Ai-jun, WANG Yu-guo, XING Yi-chuan, et al.SWCC fitting models of total and matrix suction for Ili loess[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1040-1049. (in Chinese)) [5] 张爱军, 邢义川, 汪海涛, 等. 基于增湿变形的渠道工程黄土渠基湿陷性评价方法[J]. 水利学报, 2017, 48(1): 41-51, 60. (ZHANG Ai-jun, XING Yi-chuan, WANG Hai-tao, et al. Evaluation method for collapsibility of channel engineering with loess foundation based on moistening deformation[J]. Journal of Hydraulic Engineering, 2017, 48(1): 41-51, 60. (in Chinese)) [6] 杨生彬. 兰州某工程黄土湿陷性室内与现场试验对比分析[J]. 工程勘察, 2017(增刊2): 301-305. (YANG Sheng-bing.Comparative study on laboratory test and field tests of collapsible loess in Lanzhou[J]. Geotechnical Investigation & Surveying, 2017(S2): 301-305. (in Chinese)) [7] 黄雪峰, 陈正汉, 哈双, 等. 大厚度自重湿陷性黄土场地湿陷变形特征的大型现场浸水试验研究[J]. 岩土工程学报, 2006(3): 382-389. (HUANG Xue-feng, CHEN Zheng-han, HA Shuang, et al.Large area field immersion tests on characteristics of deformation of self weight collapse loess under overburden pressure[J]. Chinese Journal of Geotechnical Engineering, 2006(3): 382-389. (in Chinese)) [8] 安鹏, 邢义川, 张爱军, 等. 基于离心模型试验的深厚湿陷性黄土自重湿陷性评价研究[J]. 四川大学学报(工程科学版), 2016, 48(6): 23-30. (AN Peng, XING Yi-chuan, ZHANG Ai-jun, et al.Research on evaluation of self-weight collapsibility for large-thickness collapsible loess using centrifugal model test[J]. Journal of Sichuan University (Engineering Science Edition), 2016, 48(6): 23-30. (in Chinese)) [9] 邢义川, 金松丽, 赵卫全, 等. 基于离心模型试验的黄土湿陷试验新方法研究[J]. 岩土工程学报, 2017, 39(3): 389-398. (XING Yi-chuan, JIN Song-li, ZHAO Wei-quan, et al.New experimental method for loess collapsibility using centrifugal model tests[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 389-398. (in Chinese)) [10] 张建红, 孙国亮, 鲁晓兵. 离心机中动冰荷载的模拟[J]. 岩土工程学报, 2005(4): 474-477. (ZHANG Jian-hong, SUN Guo-liang, LU Xiao-bing.Centrifuge modeling of copper ion migration in unsaturated silty clay[J]. Chinese Journal of Geotechnical Engineering, 2005(4): 474-477. (in Chinese)) [11] 侯瑜京, 彭仁, 张雪东, 等. 垃圾土边坡失稳离心模拟试验研究[J]. 中国水利水电科学研究院学报, 2017, 15(4): 241-249. (HOU Yu-jing, PENG Ren, ZHANG Xue-dong, et al.Centrifuge modeling of municipal solid waste slope failure[J]. Journal of China Institute of Water Resources and Hydropower Research, 2017, 15(4): 241-249. (in Chinese)) [12] 贾杰, 裴向军, 谢睿, 等. 延安市阳崖黄土边坡开挖破坏离心模拟试验研究[J]. 工程地质学报, 2016, 24(1): 1-9. (JIA Jie, PEI Xiang-jun, XIE Rui, et al.Centrifugal simulation experiment for a loess cutting slope at Yangya, Yanan city, China[J]. Journal of Engineering Geology, 2016, 24(1): 1-9. (in Chinese)) [13] 杜延龄, 韩边兵. 土工离心模型试验技术[M]. 北京: 中国水利水电出版社, 2010. (DU Yan-ling, HAN Lian-bing.Geotechnical Centrifuge Model Test Technology[M]. Beijing: China Water and Power Press, 2010. (in Chinese))