Abstract:The dilatancy of soils is an important basis for constitutive models, and the current dilatancy models do not fully reveal their common laws, which is also an important reason why the existing constitutive models cannot well reflect the deformation mechanism of soils. Based on the Hadoop and Spark computing platform, a distributed Levenberg Marquardt regression (DLMR) algorithm for deep mining of big data with strong global optimization, fast convergence and computational stability is proposed. Based on a large number of experimental data of dilatancy characteristics of dilatant soils, according to the DLMR algorithm and the basic mechanical properties of soils, the big data characteristics of dilatancy of dilatant soils are obtained. It is found that there are obvious nonlinear characteristics between dilatancy ratio and stress, strain and stress increment, and the correlation functions between them are established respectively. On this basis, a dilatancy model which can reflect the common law of dilatancy characteristics of dilatant soils is constructed. Through model comparison, it is shown that the proposed model is superior to the dilatancy model of modified Cambridge model and Rowe model. By simulating the triaxial compression experimental data of dilatant soils under different stress paths, it is shown that the new model can well reflect the dilatancy under different stress paths.
杨骏堂, 刘元雪, 郑颖人, 何少其. 剪胀型土剪胀特性的大数据深度挖掘与模型研究[J]. 岩土工程学报, 2020, 42(3): 513-522.
YANG Jun-tang, LIU Yuan-xue, ZHENG Ying-ren, HE Shao-qi. Deep mining of big data and model tests on dilatancy characteristics of dilatant soils. Chinese J. Geot. Eng., 2020, 42(3): 513-522.
[1] 董晓丽, 赵成刚. 剪胀性饱和砂土弹塑性模型[J]. 应用力学学报, 2016, 33(4): 541-546. (DONG Xiao-li, ZHAO Chen-gang.The dilatancy saturated dense sand elastic-plastic model[J]. Chinese Journal of Applied Mechanics, 2016, 33(4): 541-546. (in Chinese)) [2] PRADHAN T B S, TATSUOKA F, SATO Y. Experimental stress-dilatancy relations of sand subjected to cyclic loading[J]. Soils and Foundations, 1987, 29(1): 45-64. [3] MATSUOKA H, SAKAKIBARA K.A constitutive model for sands and clays evaluating principal stress rotation[J]. Soils and Foundations, 1987, 27(4): 73-88. [4] REYNOLDS O. On the dilatancy of media composed of rigid particles in contact with experimental illustrations[J]. Philosophical Magazine, 1885, 20(127): 469-481. [5] ROWE P W.The stress-dilatancy relation for static equilibrium of an assembly of particles in contact[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1962, 269(1339): 500-527. [6] 殷志祥, 高哲, 张建成, 等. 考虑颗粒破碎引起级配演变的道砟边界面本构模型[J]. 岩土力学, 2017, 38(9): 2669-2675. (YIN Zhi-xiang, GAO Zhe, ZHANG Jiang-cheng, et al.Boundary surface model for railway ballast considering gradation evolution caused by particle breakage[J]. Rock and Soil Mechanics, 2017, 38(9): 2669-2675. (in Chinese)) [7] BEEN K, JEFFERIES M G.A state parameter for sands[J]. Géotechnique, 1985, 22(6): 99-112. [8] CUBRINOVSKI M, ISHIHARA K.Modeling of sand behavior based on state concept[J]. Soils and Foundations, 1998, 38(3): 115-127. [9] LI X S, DAFALIAS Y F.Dilatancy for cohesionless soils[J]. Géotechnique, 2000, 50(4): 449-460. [10] ANTONIO D S, CLAUDIO T.Stress-dilatancy based modelling of granular materials and extensions to soils with crushable grains[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2005, 29(4): 73-101. [11] FERN E J, ROBERT D J, SOQA K.Modeling the stress-dilatancy relationship of unsaturated silica sand in triaxial compression tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(11): 04016055. [12] PATIL U D, HOYOS L R, PUPPALA A J, et al.Modeling stress-dilatancy behavior of compacted silty sand under suction-controlled axisymmetric shearing[J]. Geotechnical and Geological Engineering, 2018, 36(6): 3961-3977. [13] 李广信, 郭瑞平. 土的卸载体缩与可恢复剪胀[J]. 岩土工程学报, 2000(2): 158-161. (LIN Guang-xin, GUO Rui-ping. Volume-contraction in unloading of shear tests and reversible dilatation of soils[J]. Chinese Journal of Geotechnical Engineering, 2000(2): 158-161. (in Chinese)) [14] 张建民. 砂土的可逆性和不可逆性剪胀规律[J]. 岩土工程学报, 2000, 22(1): 15-20. (ZHANG Jiang-min.Reversible and irreversible dilatancy of sand[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(1): 15-20. (in Chinese)) [15] 刘元雪, 施建勇. 土的可恢复性剪胀的一种解释[J]. 岩土力学, 2002, 23(3): 304-308. (LIU Yuan-xue, SHI Jian-yong.A kind of explanation of reversible dilatancy of soils[J]. Rock and Soil Mechanics, 2002, 23(3): 304-308. (in Chinese)) [16] 迟明杰, 赵成刚, 李小军. 砂土剪胀机理的研究[J]. 土木工程学报, 2009, 42(3): 99-104. (CHI Ming-jie, ZHAO Cheng-gang, LI Xiao-jun.Stress-dilation mechanism of sands[J]. China Civil Engineering Journal, 2009, 42(3): 99-104. (in Chinese)) [17] 熊焕, 郭林, 蔡袁强. 主应力轴变化下非共轴对砂土剪胀特性影响[J]. 岩土力学, 2017, 38(1): 133-140. (XIONG Huan, GUO Lin, CAI Yuan-qiang.Effect of non-coaxiality on dilatancy of sand involving principal stress axes rotation[J]. Rock and Soil Mechanics, 2017, 38(1): 133-140. (in Chinese)) [18] 孙逸飞, 陈成. 无状态变量的状态依赖剪胀方程及其本构模型[J]. 岩土力学, 2019, 40(5): 1-10. (SUN Yi-fei, CHEN Cheng.A state-dependent stress-dilatancy equation without state index and its associated constitutive model[J]. Rock and Soil Mechanics, 2019, 40(5): 1-10. (in Chinese)) [19] 陆勇, 周国庆, 顾欢达. 高低压下不同力学特性的砂土统一模型[J]. 岩土力学, 2018, 39(2): 614-620. (LU Yong, ZHOU Guo-qing, GU Huan-da.Unified model of sand with different mechanical characteristics under high and low pressures[J]. Rock and Soil Mechanics, 2018, 39(2): 614-620. (in Chinese)). [20] 刘斯宏, 沈超敏, 毛航宇, 等. 堆石料状态相关弹塑性本构模型[J]. 岩土力学, 2019, 40(8): 1-9. (LIU Si-hong, SHEN Chao-min, MAO Hang-yu, et al.State-dependent elastoplastic constitutive model for rockfill materials[J]. Rock and Soil Mechanics, 2019, 40(8): 1-9. (in Chinese)) [21] LI Q, LING X, HU J, et al.Experimental investigation on dilatancy behavior of frozen silty clay subjected to long-term cyclic loading[J]. Cold Regions Science and Technology, 2018, 153(1): 156-163. [22] 朱合华, 武威, 李晓军, 等. 基于iS3 平台的岩体隧道信息精细化采集、分析与服务[J]. 岩石力学与工程学报, 2017, 36(10): 2350-2364. (ZHU He-hua, WU Wei, LI Xiao-jun, et al.High-precision Acquisition, analysis and service of rock tunnel information based on iS3 platform[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(10): 2350-2364. (in Chinese)) [23] 黄宏伟, 李庆桐. 基于深度学习的盾构隧道渗漏水病害图像识别[J]. 岩石力学与工程学报, 2017, 36(12): 2861-2871. (HUANG Hong-wei, LI Qing-tong.Image recognition for water leakage in shield tunnel based on deep learning[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(12): 2861-2871. (in Chinese)) [24] 黄发明, 殷坤龙, 蒋水华, 等. 基于聚类分析和支持向量机的滑坡易发性评价[J]. 岩石力学与工程学报, 2018, 37(1): 156-167. (HUANG Fa-ming, YIN Kun-long, JAING Shui-hua, et al.Landslide susceptibility assessment based on clustering analysis and support vector machine[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1): 156-167. (in Chinese)) [25] 李松洋, 白瑞林, 李杜. 基于PMPSD的工业机器人几何参数标定方法[J]. 计算机工程, 2018, 44(1): 17-22. (LI Song-yang, BAI Rui-lin, LI Du.Method of geometric parameters calibration for industrial robot based on PMPSD[J]. Computer Engineering, 2018, 44(1): 17-22. (in Chinese)) [26] 宋哲理, 王超, 王振飞. 基于MapReduce的多级特征选择机制[J]. 计算机科学, 2018, 45(S2): 468-473. (SONG Zhe-li, WANG Chao, WANG Zhen-fei.Multi-level feature selection mechanism based on MapReduce[J]. Computer Science, 2018, 45(S2): 468-473. (in Chinese)) [27] ROSCOE K H, BURLAND J B.On the generalized stress-strain behavior of wet clay[J]. Journal of Terramechanics, 1970, 7(2): 107-108. [28] 姚仰平, 侯伟, 罗汀. 土的统一硬化模型[J]. 岩石力学与工程学报, 2009, 28(10): 2135-2151. (YAO Yang-ping, HOU Wei, LUO Ding.Unified hardening model for soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10): 2135-2151. (in Chinese)) [29] 姚仰平, 黄冠, 王乃东, 等. 堆石料的应力–应变特性及其三维破碎本构模型[J]. 工业建筑, 2011, 41(9): 12-17. (YAO Yang-ping, HUANG Guan, WANG Nai-dong.Stress-strain characteristic and three-dimensional constitutive model of rockfill considering crushing[J]. Industrial Construction, 2011, 41(9): 12-17. (in Chinese)) [30] SHIVELY H L.A state dependent constitutive model for rockfill materials[J]. International Journal of Geomechanics, 2014, 15(5): 969-970. [31] CHEN C, ZHANG J.Constitutive modeling of loose sands under various stress paths[J]. International Journal of Geomechanics, 2013, 13(1): 1-8. [32] YAMAMURO J A, ABRANTES A E.Behavior of medium sand under very high strain rates[J]. Geotechnical Special Publication, 2005(143): 61-70. [33] PENUMADU D, ZHAO R.Triaxial compression behavior of sand and gravel using artificial neural networks (ANN)[J]. Computers and Geotechnics, 1999, 24(3): 207-230.