Field tests on thermal response characteristics of micro steel pile group under multiple temperature cycles in winter conditions
REN Lian-wei1, XU Jian1, KONG Gang-qiang2, LIU Han-long2,3
1. School of Civil Engineering, Henan Polytechnic University, Jiaozuo 454000, China; 2. Key Laboratory of Geomechanics and Embankment Engineering, Ministry of Education, Hohai University, Nanjing 210024, China; 3. College of Civil Engineering, Chongqing University, Chongqing 400045, China
摘要 能量桩技术具有支撑上部结构和浅层地热能换热器双重作用;作为一种节能减排新技术,近年来获得了一定的发展。依托微型钢管桩加固既有基础托换工程,开展冬季工况多次温度循环下微型钢管桩群桩的热力响应现场试验;实测不同间歇时长情况下桩身温度与应力等变化规律,探讨不同运行模式下的桩基换热性能系数(COP,coefficient of performance)。试验结果表明:文中试验条件下,桩身附加温度应力随循环次数增加而增大,且随间歇时间的延长而减小;桩基COP随循环次数增加而减小,且随间歇时间的延长而增大;附加拉应力未超过设计控制范围、不会导致桩体破坏。
Abstract:The energy pile technology has dual functions of supporting superstructure and acting as shallow geothermal heat exchanger. As an energy-saving and emission-reduction technology, it has obtained certain development in recent years. Relying on the micro steel piles to reinforce the existing foundation underpinning project, the field tests on thermal response of the micro steel group piles under multiple temperature cycles are carried out. The variation of pile temperature and pile stress under different intermittent time is measured. The coefficients of performance (COP) of piles are discussed and analyzed. It is shown that the additional thermal stress of piles increases with the increasing cycling times, and the increase ratio decreases with the interval time; the COP of piles decreases with the increasing cycling times, and the decrease ratio decreases with the interval time. The values of the additional tensile stress does not exceed the design control range, which will not cause the damage of the pile.
任连伟, 徐健, 孔纲强, 刘汉龙. 冬季工况多次温度循环下微型钢管桩群桩热力响应特性现场试验[J]. 岩土工程学报, 2019, 41(11): 2053-2060.
REN Lian-wei, XU Jian, KONG Gang-qiang, LIU Han-long. Field tests on thermal response characteristics of micro steel pile group under multiple temperature cycles in winter conditions. Chinese J. Geot. Eng., 2019, 41(11): 2053-2060.
[1] BRANDL H.Energy foundations and other thermo-active ground structures[J]. Géotechnique, 2006, 56(2): 81-122. [2] 刘汉龙, 孔纲强, 吴宏伟. 能量桩工程应用研究进展及PCC能量桩技术开发[J]. 岩土工程学报, 2013, 36(1): 176-181. (LIU Han-long, KONG Gang-qiang, NG C W W. Review of the applications of energy pile and development of PCC energy pile technical[J]. Chinese Journal of Geotechnical Engineering, 2013, 36(1): 176-181. (in Chinese)) [3] 黄旭, 孔纲强, 刘汉龙, 等. 循环温度场作用下PCC能量桩热力学特性模型试验研究[J]. 岩土力学, 2015, 36(3): 667-673. (HUANG Xu, KONG Gang-qiang, LIU Han-long, et al.Experimental research on thermomechanical characteristics of PCC energy pile under cyclic temperature field[J]. Rock and Soil Mechanics, 2015, 36(3): 667-673. (in Chinese)) [4] BOURNE-WEBB P, AMATYA B, SOGA K, et al.Energy pile test at Lambeth College, London: geotechnical and thermodynamic aspects of pile response to heat cycles[J]. Géotechnique, 2009, 59(3): 237-248. [5] BOURNE-WEBB P J, AMATYA B, SOGA K. A framework for understanding energy pile behaviour[J]. Proceedings of the Institution of Civil Engineers Geotechnical Engineering, 2013, 166(2): 170-177. [6] LALOUI L, NUTH M, VULLIET L.Experimental and numerical investigations of the behaviour of a heat exchanger pile[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 2006, 30(8): 763-781. [7] LALOUI L, DONNA A D.Understanding the thermal- mechanical behaviour of energy piles[J]. Proceeding of the ICE - Civil Engineering, 2011, 164(6): 503-519. [8] MURPHY K D, MCCARTNEY J S, HENRY K S.Evaluation of thermo-mechanical and thermal behavior of full-scale energy foundations[J]. Acta Geotechnica, 2015, 10(2): 179-195. [9] MURPHY K D, MCCARTNEY J S.Seasonal response of energy foundations during building operation[J]. Geotechnical & Geological Engineering, 2015, 33(2): 343-356. [10] GUO Y M, ZHANG G Z, LIU S Y.Investigation on the thermal response of full-scale PHC energy pile and ground temperature in multi-layer strata[J]. Applied Thermal Engineering, 2018, 143: 836-848. [11] 桂树强, 程晓辉. 能源桩换热过程中结构响应原位试验研究[J]. 岩土工程学报, 2014, 36(6): 1087-1094. (GUI Shu-qiang, CHENG Xiao-hui.In-situ tests on structural responses of energy piles during heat exchanging process[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1087-1094. (in Chinese)) [12] YOU S, CHENG X H, GUO H, et al.Experimental study on structural response of CFG energy piles[J]. Applied Thermal Engineering, 2016, 96: 640-651. [13] 路宏伟, 蒋刚, 王昊, 等. 摩擦型能源桩荷载-温度现场联合测试与承载性状分析[J]. 岩土工程学报, 2017, 39(2): 334-342. (LU Hong-wei, JIANG Gang, WANG Hao, et al.In-situ tests and thermo-mechanical bearing characteristics of friction geothermal energy piles[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2): 334-342. (in Chinese)) [14] OLGUN C G, OZUDOGRU T Y, ABDELAZIZ S L, et al.Long-term performance of heat exchanger piles[J]. Acta Geotechnica, 2015, 10(5): 553-569. [15] WANG C L, LIU H L, KONG G Q, et al.Model tests of energy piles with and without a vertical load[J]. Journal of Environmental Geotechnics, 2016, 4(3): 220-220. [16] WANG C L, LIU H L, KONG G Q, et al.Different types of energy piles with heating-cooling cycles[J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 2017, 170(3): 220-231. [17] LIU H L, WANG C L, KONG G Q, et al.Ultimate bearing capacity of energy piles in dry and saturated sand[J]. Acta Geotechnica, 2019, 14(3): 869-879. [18] FAIZAL M, BOUAZZA A, SINGH R M.An experimental investigation of the influence of intermittent and continuous operating modes on the thermal behaviour of a full scale geothermal energy pile[J]. Geomechanics for Energy and the Environment, 2016, 8: 8-29. [19] GB 50010—2010 混凝土结构设计规范[S]. 2011. (GB 50010—2010 Code for design of concrete structure[S]. 2011. (in Chinese)) [20] JGJ/T 438—2018 桩基地热能利用技术标准[S]. 2018. (JGJ/T 438—2018 Technical standard for utilization of geothermal energy through piles[S]. 2018. (in Chinese))