Gradation equation and compaction characteristics of continuously distributed coarse-grained soil
ZHU Sheng
1. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210024, China; 2. College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210024, China
Abstract:Based on the growth curve proposed by Morgan et al., a two-parameter gradation equation that can reflect the "upward convex" and "S-shaped" particle distributions of coarse-grained soil is proposed. When the shape parameter a goes to infinity, the gradation formula is transformed into a fractal distribution equation. On this basis, a method for determining the optimal compaction performance gradation by using the relative density test method is proposed. The suggested gradation equation has good applicability to the filling gradation of high-rockfill dams in Changheba, Dashixia and Lianghekou. Using these research results, the indoor relative density tests on Dashixia gravel material are conducted. The results show that: (1) For the coarse aggregates with gradation of dmax=60 mm and different distribution laws, with change of gradation parameters, the maximum and minimum dry densities both have extreme points or inflection points, and the corresponding critical P5 values are approximately 35% and remain basically unchanged. (2) The critical P5 value corresponds to the excellent compaction performance gradation. The test value of dry density obtained by the fractal distribution gradation is the largest. When the particle gradation is close to the fractal distribution, the compaction performance is satisfactory, and the critical P5 value corresponding to the fractal distribution gradation is the optimal compaction performance gradation. The rockfill of Changehe dam with fractal distribution has a higher filling density under the lower field compaction parameters, which proves the rationality of this conclusion. (3) According to the scale independence of the critical fractal dimension, the research results of the indoor optimal compaction performance can be conveniently extended to different maximum particle size gradations on site. The conclusion can be used for the gradation design and compaction performance evaluation of coarse-grained soil.
[1] FULLER W B,THOMPSON S E.The laws of proportioning concrete[J]. Transactions of the American Society of Civil Engineers, 1906, 57(2): 67-143. [2] TALBOT A N, RICHART F E.The strength of concrete-its relation to the cement, aggregates and water[J]. Illinois Univ Eng Exp Sta Bulletin, 1923, 137: 1-118. [3] 曾凡, 胡永平. 矿物加工颗粒学[M]. 徐州: 中国矿业大学出版社, 1995. (ZENG Fan, HU Yong-ping.Mineral processing granules[M]. Xuzhou: China University of Mining and Technology Press, 1995. (in Chinese)) [4] WEYMOUTH C A.Effect of particle interference in mortars and concrete[J]. Rock Products, 1933, 36(2): 26-30. [5] 陈忠达, 袁万杰, 郑东启. 级配理论应用研究[J]. 重庆交通大学学报(自然科学版) , 2005 , 24(4): 44-48. (CHEN Zhong-da, YUAN Wan-jie, ZHENG Dong-qi.Study on the application of grading theory[J]. Journal of Chongqing Jiaotong University, 2005, 24(4): 44-48. (in Chinese)) [6] 王立久, 刘慧. 矿料级配设计理论的研究现状与发展趋势[J]. 公路, 2008(1) : 175-180. (WANG Li-jiu, LIU Hui.Current status and future trends of aggregate grading design theory[J]. Highway, 2008(1): 175-180. (in Chinese)) [7] 朱俊高, 郭万里, 王元龙. 连续级配土的级配方程及其适用性研究[J]. 岩土工程学报, 2015, 37(10): 1931-1936. (ZHU Jun-gao, GUO Wan-li, WANG Yuan-long.Equation for soil gradation curve and its applicability[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 108-115. (in Chinese)) [8] MCDOWELL G R, BOLTON M D, ROBERTSON D.The fractal crushing of granular materials[J]. Journal of the Mechanics and Physics of Solids, 1996, 44(12): 2079-2102. [9] TURCOTTE D L.Fractals and fragmentation[J]. Geophys Res, 1986, 91(B2): 1921-1926. [10] 张季如, 胡泳, 张弼文. 石英砂砾破碎过程中粒径分布的分形行为研究[J]. 岩土工程学报, 2015, 37(5): 784-791. (ZHANG Ji-ru, HU Yong, ZHANG Bi-wen.Fractal behavior of practical-size distribution during particle crushing of quartz sand and gravel[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 784-791.(in Chinese)) [11] 朱晟, 邓石德, 宁志远. 基于分形理论的堆石料级配设计方法[J]. 岩土工程学报, 2017, 39(6): 1151-1155. (ZHU Sheng, DENG Shi-de, NING Zhi-yuan, et al.Gradation design method of rockfill materials based on the fractal theory[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1151-1155. (in Chinese)) [12] 朱晟, 冯燕明, 冯树荣. 基于分形理论的爆破堆石料颗粒级配的优化方法: 中国, ZL201110125311.7[P].2011.12.14. (ZHU Sheng, FENG Yan-ming, FENG Shu-rong. Optimization method of particle size distribution of blasting rockfill based on fractal theory: China, ZL201110125311.7 [P]. 2011-12-14.(in Chinese)) [13] DLT5395—2007 碾压式土石坝设计规范[S]. 2007. (DLT5395—2007 Design specification for rolled earth-rock fill dams[S]. 2007. (in Chinese)) [14] DLT5016—2011混凝土面板堆石坝设计规范[S]. 2011. (DLT 5016—2011 Design code for concrete face rockfill dams[S]. 2011. (in Chinese)) [15] MENQ F Y.Dynamic properties of sandy and gravelly soils[D]. Austin: University of Texas at Austin, 2003. [16] 李罡, 刘映晶, 尹振宇, 等. 粒状材料临界状态的颗粒级配效应[J]. 岩土工程学报, 2014, 36(3): 452-457. (LI Gang, LIU Ying-jing, YIN Zhen-yu, et al.Grading effect on critical state behavior of granular materials[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 452-457. (in Chinese)) [17] 杨鸽, 朱晟. 考虑堆石料空间变异性的土石坝地震反应随机有限元分析[J]. 岩土工程学报, 2016, 38(10): 1822-1832. (YANG Ge, ZHU Sheng.Seismic response of rockfill dams considering spatial variability of rockfill materials via random finite element method[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1822-1832. (in Chinese)) [18] 朱晟, 钟春欣, 郑希镭, 等. 堆石体的填筑标准与级配优化研究[J]. 岩土工程学报, 2018, 40(1): 108-115. (ZHU Sheng, ZHONG Chun-xin, ZHENG Xi-lei.Filling standards and gradation optimization of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 108-115. (in Chinese)) [19] MORGAN P H, MERCER L P, FLODIN N W.General model for nutritional responses of higher organisms[J]. Proceedings of the National Academy of Sciences of the United States of America 1975, 72(11): 4327-4331. [20] 王军保, 刘新荣, 李鹏. MMF模型在采空区地表沉降预测中的应用[J]. 煤炭学报, 2012, 37(3): 411-415. (WANG Jun-bao, LIU Xin-rong, LI Peng.Study on prediction of surface subsidence in mined-out region with the MMF model[J]. Journal of China Coal Society, 2012, 37(3): 411-415. (in Chinese)) [21] 张莉, 苗连朋, 温仲明. 基于MMF模型估算植被与降雨变化对水沙的影响以延河流域为例[J]. 自然资源学报, 2015, 30(3): 446-458. (ZHANG Li, MIAO Lian-peng, WEN Zhong-ming.Estimating the effect of vegetation and precipitation on runoff and sediment using the MMF model: a case study in the Yanhe River Basin[J]. Journal of Natural Resources, 2015, 30(3): 446-458. (in Chinese)) [22] 刘杰. 土的渗透稳定性与渗流控制[M]. 北京: 水利电力出版社, 1992. (LIU Jie.Seepage stability and seepage control of soil[M]. Beijing: Water Resources and Electric Power Press, 1992. (in Chinese)) [23] DLT5356—2006水电水利工程粗粒土试验规程[S]. 2006. (DLT5356-2006 Test code for coarse grained soil in hydropower and water conservancy projects[S]. 2006, (in Chinese)) [24] 朱晟, 王京, 钟春欣, 等. 堆石料干密度缩尺效应的试验研究[J]. 岩石力学与工程学报, 2019, 38(5): 1073-1080. (ZHU Sheng, WANG Jing, ZHONG Chun-xin, et al.Experimental study on scale effect of the dry density of rockfill material[J]. Chinese Journal of Rock Mechanics & Engineering, 2019, 38(5): 1073-1080. (in Chinese))