1. Nanjing Hydraulic Research Institute, Nanjing 210029, China; 2. College of Water Conservancy and Hydropower, Hohai University, Nanjing 210024, China
Abstract:The relatively low early strength and significant cracks are the common issues for the cementitious materials-stabilized soil (cemented soil). To remedy its defects, novel ionic soil stabilizers (ISS) with dosages from 1/300 to 1/50 of water content volume of the cemented soil are applied. Through the tests on unconfined compressive strength and volume chemical shrinkage, the modification feasibility of ISS application is verified. Through the characterization and analyses of the surface adsorption behaviors, phase evolution and micro-structure, the modification mechanisms of ISS on cemented soil are systematically studied. The results indicate that the ISS molecules adsorb on the compositions of cemented soil selectively. After the ISS addition, the system dispersion is enhanced, the water combination capacity of soil minerals is reduced, thus accelerating the formation of hydration products, benefiting the pore distribution and increasing the volume chemical shrinkage. The optimum dosage of this study is 1/150, and the excessive addition will retard the modification effects but reduce the chemical shrinkage. The results can be used as a reference for the modification of cemented soil with ISS.
[1] HORPIBULSUK S, RACHAN R, CHINKULKIJNIWAT A, et al.Analysis of strength development in cement-stabilized silty clay from microstructural considerations[J]. Construction & Building Materials, 2010, 24(10): 2011-2021. [2] SONG D, CHEN B.Extended energy accounting for energy consumption and co2, emissions of cement industry—a basic framework[J]. Energy Procedia, 2016, 88: 305-308. [3] 易耀林, 李晨, 孙川, 等. 碱激发矿粉固化连云港软土试验研究[J]. 岩石力学与工程学报, 2013, 32(9): 1820-1826. (YI Yao-lin, LI Chen, SUN Chuan, et al.Test on alkali-activated ground granulated blast-furnace slag (GGBS) for Lianyungang soft soil stabilization[J]. Chinese Journal of Rock Mechanics & Engineering, 2013, 32(9): 1820-1826. (in Chinese)) [4] JAFER H, ATHERTON W, SADIQUE M, et al.Stabilisation of soft soil using binary blending of high calcium fly ash and palm oil fuel ash[J]. Applied Clay Science, 2017, 152: 323-332. [5] GÖKTEPE A B, SEZER A, SEZER G İ, et al. Classification of time-dependent unconfined strength of fly ash treated clay[J]. Construction & Building Materials, 2008, 22(4): 675-683. [6] PHETCHUAY C, HORPIBULSUK S, SUKSIRIPATTANAPONG C, et al.Calcium carbide residue: alkaline activator for clay-fly ash geopolymer[J]. Construction & Building Materials, 2014(69): 285-294. [7] 任葳葳. 高分子材料改性淤泥质土及其机理研究[D]. 重庆:重庆大学, 2015. (REN Wei-wei.Study on modification and mechanism of silt solidified by polymer material[D]. Chongqing: Chongqing University, 2015. (in Chinese)) [8] 刘清秉, 项伟, 崔德山. 离子土固化剂对膨胀土结合水影响机制研究[J]. 岩土工程学报, 2012, 34(10): 1887-1895. (LIU Qing-bing, XIANG Wei, CUI De-shan.Effect of ionic soil stabilizer on bound water of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1887-1895. (in Chinese)) [9] 崔德山, 项伟, 曹李靖, 等. ISS减小红色黏土结合水膜的试验研究[J]. 岩土工程学报, 2010, 32(6): 944-949. (CUI De-shan, XIANG Wei, CAO Li-jing, et al.Experimental study on reducing thickness of adsorbed water layer for red clay particles treated by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6): 944-949. (in Chinese)) [10] 刘清秉, 项伟, 张伟锋, 等. 离子土壤固化剂改性膨胀土的试验研究[J]. 岩土力学, 2009, 30(8): 2286-2290. (LIU Qing-bing, XIANG Wei, ZHANG Wei-feng, et al.Experimental study of ionic soil stabilizer-improved expansive soil[J]. Rock & Soil Mechanics, 2009, 30(8): 2286-2290. (in Chinese)) [11] SUN J, SHI H, QIAN B, et al.Effects of synthetic C-S-H/PCE nanocomposites on early cement hydration[J]. Construction and Building Materials, 2017, 140: 282-292. [12] 唐胜程, 王伟山, 景希玮, 等. PCE结构对硅酸三钙结构和形貌的影响[J]. 建筑材料学报, 2016, 19(6): 1073-1076. (TANG Sheng-cheng, WANG Wei-shan, JING Xi-wei, et al.Effect of PCE structure on the structure and morphology of tricalcium silicate[J]. Journal of Building Materials, 2016, 19(6): 1073-1076. (in Chinese)) [13] THOMAS J J, GHAZIZADEH S, MASOERO E.Kinetic mechanisms and activation energies for hydration of standard and highly reactive forms of β -dicalcium silicate (C2S)[J]. Cement & Concrete Research, 2017, 100: 322-328. [14] FERNÁNDEZ-JIMÉNEZ A, PALOMO A. Mid-infrared spectroscopic studies of alkali-activated fly ash structure[J]. Microporous & Mesoporous Materials, 2005, 86(1): 207-214. [15] 翁诗甫. 傅里叶变换红外光谱分析[M]. 北京: 化学工业出版社, 2010. (WENG Shi-fu.Analysis of fourier transform infrared spectroscopy[M]. Beijing: Chemical Industry Press, 2010. (in Chinese)) [16] XU F, WEI H, QIAN W, et al.Composite alkaline activator on cemented soil: multiple tests and mechanism analyses[J]. Construction and Building Materials, 2018, 188: 433-443. [17] JIANG Y, ZHANG S, LIU X.Early calcium monocar- boaluminate hydrate formation in cement paste: effect of polycarboxylate type admixture[J]. Journal of Southeast University (English Edition), 2010, 26: 574-577. [18] PRINCE W, EDWARDS M.Interaction between ettringite and a polynaphthalene sulfonate superplasticizer in a cementitious paste[J]. Cement & Concrete Research, 2002, 32(1): 79-85. [19] RAMACHANDRAN V S, PAROLI R, BEAUDOIN J, et al.Handbook of thermal analysis of construction materials[M]. New York: William Andrew Publishing, 2002. [20] VITALE E, DENEELE D, PARIS M, et al.Multi-scale analysis and time evolution of pozzolanic activity of lime treated clays[J]. Applied Clay Science, 2017, 141: 36-45. [21] ZENG Q, LI K, et al.Determination of cement hydration and pozzolanic reaction extents for fly-ash cement pastes[J]. Construction & Building Materials, 2012, 27(1): 560-569. [22] METHA P K, MONTERO P J.Concrete: microstructure, properties and materials[M]. London: McGraw-Hill, 2006. [23] TAN H, GU B, MA B, et al.Mechanism of intercalation of polycarboxylate superplasticizer into montmorillonite[J]. Applied Clay Science, 2016, 129: 40-46. [24] AITAKBOUR R, BOUSTINGORRY P, LEROUX F, et al.Adsorption of poly carboxylate poly (ethylene glycol) (PCP) esters on montmorillonite (Mmt): effect of exchangeable cations (Na+, Mg2+ and Ca2+) and PCP molecular structure[J]. Journal of Colloid & Interface Science, 2015, 437: 227-234.