Abstract:With the development of the national marine strategy and economy in China, more and more cross-sea and cross-river shield tunnels are to be built. The face stability of the shield tunnels is a key problem for the project safety. It will be more difficult to control the face stability under a high water pressure because of the unloading and seepage condition. A device for centrifugal model tests on face stability of shield tunnels is designed. The collapse patterns of the tunnel face and the surrounding soil pressures are investigated through the centrifugal model tests. Some important conclusions are drawn as follows: (1) The collapse of the tunnel face can be divided into four stages. At the first stage, the soil is still in an elastic state and the tunnel face presents a micro deformation. At the second stage, a local collapse happens to the tunnel face and the damaged area is located at the top of the tunnel face. At the third stage, the soil arch is formed, and the limit support pressure is reached. At the last stage, general collapse occurs and the collapse extends to the ground surface. (2) With the decrease of the slurry pressure, the soil pressure first decreases then increases, and a relative stable value is kept at last. The suggested support pressure ratio is 0.98 in this study. (3) The pore water pressure around the tunnel face decreases evidently. The seepage force acting on the soil contributes to the damage of the tunnel face. The conclusions obtained in this study may be useful for the similar projects.
金大龙, 袁大军, 郑浩田, 李兴高, 丁菲. 高水压条件下泥水盾构开挖面稳定离心模型试验研究[J]. 岩土工程学报, 2019, 41(9): 1653-1660.
JIN Da-long, YUAN Da-jun, ZHENG Hao-tian, LI Xing-gao, DING Fei. Centrifugal model tests on face stability of slurry shield tunnels under high water pressures. Chinese J. Geot. Eng., 2019, 41(9): 1653-1660.
[1] 孙钧. 论跨江越海建设隧道的技术优势与问题[J]. 隧道建设, 2013, 33(5): 337-342. (SUN Jun.Study on technological advantages and problems in construction of tunnels crossing rivers and seas[J]. Tunnel Construction, 2013, 33(5): 337-342. (in Chinese)) [2] 王梦恕. 水下交通隧道发展现状与技术难题——兼论“台湾海峡海底铁路隧道建设方案”[J]. 岩石力学与工程学报, 2008, 27(11): 2161-2172. (WANG Meng-shu.Current developments and technical issues of underwater traffic tunnel-discussion on construction scheme of Taiwan Strait undersea railway tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(11): 2161-2172. (in Chinese)) [3] 宋克志, 王梦恕. 烟大渤海海峡隧道的可行性研究探讨[J]. 现代隧道技术, 2006, 43(6): 1-8. (SONG Ke-zhi, WANG Meng-shu.Feasibility study on Bohai Channel tunnel connecting Yantai and Dalian[J]. Modern Tunnelling Technology, 2006, 43(6): 1-8. (in Chinese)) [4] 谭忠盛, 王梦恕, 张弥. 琼州海峡铁路隧道可行性研究探讨[J]. 岩土工程学报, 2001, 23(2): 139-143. (TAN Zhong-sheng, WANG Meng-shu, ZHANG Mi.A feasibility study on Qiongzhou Strait railway tunnel[J]. Chinese Journal of Geotechical Engineering, 2001, 23(2): 139-143. (in Chinese)) [5] LECA E, DORMIEUX L.Upper and lower bound solutions for the face stability of shallow circular tunnels in frictional material[J]. Géotechnique, 1990, 40(4): 581-606. [6] CHAMBON P, CORTE J F.Shallow tunnels in cohesionless soil stability of tunnel face[J]. Journal of Geotechnical Engineering, 1994, 120(7): 1148-1165. [7] SOUBRAL A H.Three-dimensional face stability analysis of shallow circular tunnels[C]// Proceedings of the International Conference on Geotechnical and Geological Engineering. Melbourne, 2000. [8] MOLLON G, DIAS D, SOUBRA A H.Two new limit analysis mechanisms for the computation of the collapse pressures of circular tunnel driven by a pressurized shield[C]// 2th International Conference on Computational Methods in Tunneling. Bochum, 2009: 849-856. [9] MOLLON G, DIAS D, SOUBRA A H.Continuous velocity fields for collapse and blowout of a pressurized tunnel face in purely cohesive soil[J]. Int J Numer Anal Methods Geomech, 2013, 37(13): 2061-2083. [10] SOUBRA A H.Three-dimensional face stability analysis of shallow circular tunnels[C]// International Conference on Geotechnical and Geological Engineering. Melbourne, 2000. [11] 刘维, 张翔杰, 唐晓武, 等. 饱和沙土中土压盾构开挖面极限支护力[J]. 浙江大学学报(工学版), 2012, 46(4): 665-671. (LIU Wei, ZHANG Xiang-jie, TANG Xiao-wu, et al.Supporting pressure for earth pressure balance tunnel face stability when tunneling is implemented in saturated sandy soil[J]. Journal of Zhejiang University (Engineering Science), 2012, 46(4): 665-671. (in Chinese)) [12] 高健, 张义同, 乔金丽. 渗透力对隧道开挖面稳定性影响分析[J]. 岩土工程学报, 2009(10): 1547-1553. (GAO Jian, ZHANG Yi-tong, QIAO Jin-li.Face stability analysis of tunnels with consideration of seepage force[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(10): 1547-1553. (in Chinese)) [13] ANAGNOSTOU G, KOVÁRI K. Face stability conditions with earth-pressure-balanced shields[J]. Tunnelling & Underground Space Technology, 1996, 11(2): 165-173. [14] HORN N.Horizontaler erddruck auf senkrechte abschlussflächen von tunnelröhren[C]// Landeskonferenz Der Ungarischen Tiefbauindustrie, 1961: 7-16. (HORN N.Horizontal earth pressure on vertical end faces of tunnels[C]// National Conference of the Hungarian Civil Engineering. Budapest, 1961. (in German)) [15] JANCSECZ S, STEINER W.Face support for a large mix-shield in heterogeneous ground conditions[M]. Springer: Tunnelling'94, 1994: 531-550. [16] ANAGNOSTOU G, KOV K.Face stability in slurry and EPB shield tunnelling[J]. Tunnels & Tunnelling International, 1996, 28(12): 453-458. [17] 魏纲. 顶管工程土与结构的性状及理论研究[D]. 杭州:浙江大学, 2005. (WEI Gang.Theoretical study on properties of soil and structure during pipe jacking construction[D]. Hangzhou: Zhejiang University, 2005. (in Chinese)) [18] CHAMBON P, CORTE J F.Shallow tunnels in cohesionless soil stability of tunnel face[J]. Journal of Geotechnical Engineering, 1994, 120(7): 1148-1165. [19] 汤旅军, 陈仁朋, 尹鑫晟, 等. 密实砂土地层盾构隧道开挖面失稳离心模型试验研究[J]. 岩土工程学报, 2013(10): 1830-1838. (TANG Lü-jun, CHEN Ren-peng, YIN Xin-sheng, et al.Centrifugal model tests on face stability of shield tunnels in dense sand[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1830-1838. (in Chinese)) [20] 陈仁朋, 李君, 陈云敏, 等. 干砂盾构开挖面稳定性模型试验研究[J]. 岩土工程学报, 2011, 33(1): 117-122. (CHEN Ren-peng, LI Jun, CHEN Yun-min, et al.Large-scale tests on face stability of shield tunneling in dry cohesionless soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(1): 117-122. (in Chinese)) [21] 朱合华, 丁文其, 李晓军. 盾构隧道施工性态的力学模拟与分析[J]. 土木工程学报, 2000, 33(3): 98-103. (ZHU He-hua, DING Wen-qi, LI Xiao-jun.Construction simulation for the mechanical behavior of shield tunnel and its application[J]. China Civil Engineering Journal, 2000, 33(3): 98-103. (in Chinese)) [22] 张子新, 邵华. 盾构推进的损伤力学分析及现场试验研究[J]. 地下空间, 2004, 24(3): 285-289. (ZHANG Zi-xin, SHAO Hua.Damage mechanics analysis and experiment study on shield tunneling[J]. Underground Space, 2004, 24(3): 285-289.(in Chinese)) [23] 李昀, 张子新, 张冠军. 泥水平衡盾构开挖面稳定模型试验研究[J]. 岩土工程学报, 2007, 29(7): 1074-1079. (LI Yun, ZHANG Zi-xin, ZHANG Guan-jun.Laboratory study on face stability mechanism of slurry shields[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(7): 1074-1079. (in Chinese)) [24] 秦建设. 盾构施工开挖面变形与破坏机理研究[D]. 南京:河海大学, 2005. (QIN Jian-she.Study on face deformation and collapse of earth pressure shield tunnel[D]. Nanjing: Hohai University, 2005. (in Chinese)) [25] 王敏强, 陈宏胜. 盾构推进隧道结构三维非线性有限元仿真[J]. 岩石力学与工程学报, 2002, 21(2): 228-232. (WANG Min-qiang, CHEN Hong-sheng.3-dimensional non-linear finite element simulation of tunnel structure for moving-forward shield[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(2): 228-232. (in Chinese)) [26] ZHANG Z X, HU X Y, SCOTT K D.A discrete numerical approach for modeling face stability in slurry shield tunnelling in soft soils[J]. Computers & Geotechnics, 2011, 38(1): 94-104. [27] STEWART D P, CHEN Y R, KUTTER B L.Experience with the use of methylcellulose as a viscous pore fluid in centrifuge models[J]. Geotechnical Testing Journal, 1998, 21(4): 365-369. [28] GARNIER J, GAUDIN C, III S M S, et al. Catalogue of scaling laws and similitude questions in geotechnical centrifuge modelling[J]. International Journal of Physical Modelling in Geotechnics, 2007, 3(3): 1-23.