Simulation tests on spalling failure in deep straight-wall-top-arch tunnels
GONG Feng-qiang1,2, LUO Yong1, LIU Dong-qiao2
1. School of Resources and Safety Engineering, Central South University, Changsha 410083, China; 2. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing 100083, China
Abstract:To deeply understand the failure process and mechanism of spalling in deep straight-wall-top-arch tunnels, a true triaxial test is performed on the red sandstone cube sample (100 mm×100 mm×100 mm) with a straight-wall-top-arch hole using the TRW-3000 true triaxial test system to simulate the spalling process of the straight-wall-top-arch tunnel under the initial in-situ stress environment at depth of 500 m. The test process is monitored and recorded by using a video surveillance system. The failure process and failure characteristics of the sidewalls during the tests are analyzed, and compared with the failure of the circular hole sidewall at the same depth. The results show that under the condition that the vertical stress is the maximum principal stress and the horizontal radial stress is the minimum principal stress, the failure of straight-wall-top-arch tunnel mainly occurs in the area between the hance and the spandrel. The rock near the free surface is fractured into plate-like thin rock slabs that are approximately parallel to the maximum principal stress, which is characterized by typical tensile spalling fracture. With the increase of the maximum principal stress, spalling gradually develops toward the horizontal radial direction of the hole, and eventually forms a symmetrical V-shaped damage zone. The spalling slabs exhibit the arc-shaped feature with thick middle and thin wings, and spalling has obvious time effect. Compared with those of the circular hole sidewall, the dynamic failure characteristics of the straight-wall-top-arch hole sidewall are more prone to static failure, and the initial failure requires higher stress, but the sidewalls are more severely damaged under a high stress environment.
宫凤强, 罗勇, 刘冬桥. 深部直墙拱形隧洞围岩板裂破坏的模拟试验研究[J]. 岩土工程学报, 2019, 41(6): 1091-1100.
GONG Feng-qiang, LUO Yong, LIU Dong-qiao. Simulation tests on spalling failure in deep straight-wall-top-arch tunnels. Chinese J. Geot. Eng., 2019, 41(6): 1091-1100.
[1] 程小虎. 黏性地层中深埋直墙拱形隧道的支护压力及稳定性[J]. 岩土工程学报, 2017, 39(11): 2034-2042. (CHENG Xiao-hu.Earth pressure and stability of deep arch tunnel with straight wall in cohesive strata[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(11): 2034-2042. (in Chinese)) [2] 周辉, 卢景景, 徐荣超, 等. 深埋硬岩隧洞围岩板裂破坏研究的关键问题及研究进展[J]. 岩土力学, 2015, 36(10): 2737-2749. (ZHOU Hui, LU Jing-jing, XU Rong-chao, et al.Critical problems of study of slabbing failure of surrounding rock in deep hard rock tunnel and research progress[J]. Rock and Soil Mechanics, 2015, 36(10): 2737-2749. (in Chinese)) [3] DIEDERICHS M S.The 2003 canadian geotechnical colloquium: mechanistic interpretation and practical application of damage and spalling prediction criteria for deep tunnelling[J]. Canadian Geotechnical Journal, 2007, 44(9): 1082-1116. [4] GONG Q M, YIN L J, WU S Y, et al.Rock burst and slabbing failure and its influence on TBM excavation at headrace tunnels in Jinping II hydropower station[J]. Engineering Geology, 2012, 124: 98-108. [5] 宫凤强, 罗勇, 司雪峰, 等. 深部圆形隧洞板裂屈曲岩爆的模拟试验研究[J]. 岩石力学与工程学报, 2017, 36(7): 1634-1648. (GONG Feng-qiang, LUO Yong, SI Xue-feng, et al.Experimental modelling on rockburst in deep hard rock circular tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(7): 1634-1648. (in Chinese)) [6] GONG F Q, LUO Y, LI X B, et al.Experimental simulation investigation on rockburst induced by spalling failure in deep circular tunnels[J]. Tunnelling and Underground Space Technology, 2018, 81: 413-427. [7] 张传庆, 冯夏庭, 周辉, 等. 深部试验隧洞围岩脆性破坏及数值模拟[J]. 岩石力学与工程学报, 2010, 29(10): 2063-2068. (ZHANG Chuan-qing, FENG Xia-ting, ZHOU Hui, et al.Brittle failure of surrounding rock mass in deep test tunnels and its numerical simulation[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(10): 2063-2068. (in Chinese)) [8] FENG X T, XU H, QIU S L, et al.In situ observation of rock spalling in the deep tunnels of the China Jinping Underground Laboratory (2400 m depth)[J]. Rock Mechanics and Rock Engineering, 2018, 51(4): 1193-1213. [9] CAI M, KAISER P K, MARTIN C D.A tensile model for the interpretation of microseismic events near underground openings[J]. Pure and Applied Geophysics, 1998, 153(1): 67-92. [10] 周辉, 徐荣超, 卢景景, 等. 深埋隧洞板裂屈曲岩爆机制及物理模拟试验研究[J]. 岩石力学与工程学报, 2015, 34(增刊2): 3658-3666. (ZHOU Hui, XU Rong-chao, LU Jing-jing, et al.Study on mechanisms and physical simulation experiment of slab buckling rockburst in deep tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S2): 3658-3666. (in Chinese)) [11] HE M C, MIAO J L, FENG J L.Rock burst process of limestone and its acoustic emission characteristics under true-triaxial unloading conditions[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(2): 286-298. [12] DU K, TAO M, LI X B, et al.Experimental study of slabbing and rockburst induced by true-triaxial unloading and local dynamic disturbance[J]. Rock Mechanics and Rock Engineering, 2016, 49(9): 3437-3453. [13] ZHAO X G, WANG J, CAI M, et al.Influence of unloading rate on the strainburst characteristics of beishan granite under true-Triaxial unloading conditions[J]. Rock Mechanics and Rock Engineering, 2014, 47(2): 467-483. [14] 司雪峰, 宫凤强, 罗勇, 等. 深部三维圆形洞室岩爆过程的模拟试验[J]. 岩土力学, 2018, 39(2): 621-634. (SI Xue-feng, GONG Feng-qiang, LUO Yong, et al.Experimental simulation on rockburst process of deep three-dimensional circular cavern[J]. Rock and Soil Mechanics, 2018, 39(2): 621-634. (in Chinese)) [15] GONG F Q, SI X F, LI X B, et al.Experimental investigation of strain rockburst in circular caverns under deep three-dimensional high-stress conditions[J]. Rock Mechanics and Rock Engineering, 2018, DOI:10.1007/s00603- 018-1660-5. [16] 周辉, 卢景景, 胡善超, 等. 开挖断面曲率半径对高应力下硬脆性围岩板裂的影响[J]. 岩土力学, 2016, 37(1): 140-146. (ZHOU Hui, LU Jing-jing, HU Shan-chao, et al.Influence of curvature radius of tunnels excavation section on slabbing of hard brittle rockmass under high stress[J]. Rock and Soil Mechanics, 2016, 37(1): 140-146. (in Chinese)) [17] 张晓君, 王栋, 肖超, 等. 直墙拱形巷(隧)道岩爆试验及劈裂与剪切分析[J]. 岩土力学, 2013, 34(增刊1): 35-40. (ZHANG Xiao-jun, WANG Dong, XIAO Chao, et al.Test of rockburst in straight-wall-top-arch roadways(tunnels) and its splitting and shearing failure analysis[J]. Rock and Soil Mechanics, 2013, 34(S1): 35-40. (in Chinese)) [18] 何满潮, 刘冬桥, 宫伟力, 等. 冲击岩爆试验系统研发及试验[J]. 岩石力学与工程学报, 2014, 33(9): 1729-1739. (HE Man-chao, LIU Dong-qiao, GONG Wei-li, et al.Development of a testing system for impact rockburst[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(9): 1729-1739. (in Chinese)) [19] 刘冬桥, 何满潮, 汪承超, 等. 动载诱发冲击地压的实验研究[J]. 煤炭学报, 2016, 41(5): 1099-1105. (LIU Dong-qiao, HE Man-chao, WANG Cheng-chao, et al.Experimental study on rock burst induced by dynamic load[J]. Journal of China Coal Society, 2016, 41(5): 1099-1105. (in Chinese)) [20] 范秋雁. 选择巷道合理开挖方向的力学分析[J]. 煤炭学报, 1990, 15(3): 62-70. (FAN Qiu-yan.Mechanical analysis for choosing optimal orientation of underground opening[J]. Journal of China Coal Society, 1990, 15(3): 62-71. (in Chinese)) [21] DL/T 5195—2004 水工隧洞设计规范[S]. 2004. (DL/T 5195—2004 Specification for design of hydraulic tunnels[S]. 2004. (in Chinese)) [22] MARTIN C D,READ R S,MARTINO J B.Observations of brittle failure around a circular test tunnel[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(7): 1065-1073. [23] MALAN D F.Time-dependent behaviour of deep level tabular excavations in hard rock[J]. Rock Mechanics and Rock Engineering, 1999, 32(2): 123-155. [24] 刘宁, 张春生, 褚卫江. 锦屏深埋大理岩破裂扩展的时间效应试验及特征研究[J]. 岩土力学, 2012, 33(8): 2434-2444. (LIU Ning, ZHANG Chun-sheng, CHU Wei-jiang.Experimental research on time-dependent behavior of crack propagation in Jinping deep marble[J]. Rock and Soil Mechanics, 2012, 33(8): 2434-2444. (in Chinese)) [25] 顾金才, 顾雷雨, 陈安敏, 等. 深部开挖洞室围岩分层断裂破坏机制模型试验研究[J]. 岩石力学与工程学报, 2008, 27(3): 433-438. (GU Jin-cai, GU Lei-yu, CHEN An-min, et al.Model test study on mechanism of layered fracture within surrounding rock of tunnels in deep stratum[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(3): 433-438. (in Chinese)) [26] 陈陆望, 白世伟, 殷晓曦, 等. 坚硬岩体中马蹄形洞室岩爆破坏平面应变模型试验[J]. 岩土工程学报, 2008, 30(10): 1520-1526. (CHEN Lu-wang, BAI Shi-wei, YIN Xiao-xi, et al.Plane-strain model tests on rock-burst of horseshoe section caverns in hard and brittle rockmass[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1520-1526. (in Chinese)) [27] 卢文波, 周创兵, 陈明, 等. 开挖卸荷的瞬态特性研究[J]. 岩石力学与工程学报, 2008, 27(11): 2184-2192. (LU Wen-bo, ZHOU Chuang-bing, CHEN Ming, et al.Research on transient characteristics of excavation unloading[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(11): 2184-2192. (in Chinese)) [28] JIANG Q, FENG X T, FAN Y L, et al.In situ experimental investigation of basalt spalling in a large underground powerhouse cavern[J]. Tunnelling and Underground Space Technology, 2017, 68: 82-94. [29] 袁亮, 顾金才, 薛俊华, 等. 深部围岩分区破裂化模型试验研究[J]. 煤炭学报, 2014, 39(6): 987-993. (YUAN Liang, GU Jin-cai, XUE Jun-hua, et al.Model test research on the zonal disintegration in deep rock[J]. Journal of China Coal Society, 2014, 39(6): 987-993. (in Chinese)) [30] 左宇军, 马春德, 朱万成, 等. 动力扰动下深部开挖洞室围岩分层断裂破坏机制模型试验研究[J]. 岩土力学, 2011, 32(10): 2929-2936. (ZUO Yu-jun, MA Chun-de, ZHU Wan-cheng, et al.Model test study of mechanism of layered fracture within surrounding rock of tunnels in deep stratum tunneling under dynamic disturbance[J]. Rock and Soil Mechanics, 2011, 32(10): 2929-2936. (in Chinese))