Dynamic stability of slopes with interbeddings of soft and hard layers under high-frequency microseims
LIU Xin-rong1, 3, HE Chun-mei1, 2, 3, LIU Shu-lin1, 3, LIU Yong-quan1, 3, LU Yu-ming4, XIE Ying-kun5
1. School of Civil Engineering, Chongqing University, Chongqing 400045, China; 2. College of Architectural Engineering, Neijiang Normal University, Neijiang 641000, China; 3. Key Laboratory of New Technology for Construction of Cities in Mountain Area (Chongqing University), Ministry of Education, Chongqing 400045, China; 4. The Seventh Construction Engineering Co., Ltd., Chongqing 400045, China; 5. Chongqing GaoXin Engineering Survey and Design Institute Co., Ltd., Chongqing 400045, China
Abstract:Since the impounding of Three Gorges Reservoir (TGR), the microseismic activity is intensified and the earthquake intensity is increased. The high-frequency microseisms induced by TGR will have some influence on the slopes. The evolution process of failure and dynamic stability are studied based on the shaking table tests and UDEC numerical analysis method. The results are as follows: the natural frequencies decrease with the loading times, while the damping ratios increase. The descending rate of the frequencies increases with the loading times and earthquake amplitude. The PGA magnification factors decrease at different loading stages, showing that the dynamic response becomes weaker. The soft layers tend to be the dominant areas where shear failure occurs in the slopes. The whole model slope eventually presents a segmented failure process,whose upper part of soft and hard layers slides and then the slope slides along the transfixion surface forming with the shear fracture in the upper soft layer, tension fracture of secondary joint in the intermediate hard layer and shear fracture in the lower soft layer. UDEC numerical simulation shows that the permanent displacement increases with the loading times, while the stability coefficient decreases. The research results are of some value to the understanding of the formation mechanism of reservoir landslides and the prevention of disasters.
刘新荣, 何春梅, 刘树林, 刘永权, 路雨明, 谢应坤. 高频次微小地震下顺倾软硬互层边坡动力稳定性研究[J]. 岩土工程学报, 2019, 41(3): 430-438.
LIU Xin-rong, HE Chun-mei, LIU Shu-lin, LIU Yong-quan, LU Yu-ming, XIE Ying-kun. Dynamic stability of slopes with interbeddings of soft and hard layers under high-frequency microseims. Chinese J. Geot. Eng., 2019, 41(3): 430-438.
[1] 文海家, 张永兴, 柳源. 三峡库区地质灾害及其危害[J].重庆建筑大学学报, 2004, 26(1): 1-4. (WEN Hai-jia, ZHANG Yong-xing, LIU Yuan.Geological disasters and their damage in three gorges reservoir area[J]. Journal of Chongqing Jianzhu University, 2004, 26(1): 1-4. (in Chinese)) [2] 李守定, 李晓, 吴疆, 等. 大型基岩顺层滑坡滑带形成演化过程与模式[J]. 岩石力学与工程学报, 2007, 26(12): 2473-2480. (LI Shou-ding, LI Xiao, WU Jiang, et al.Evolution process and pattern of sliding zone in large consequent bedding rock landslide[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(12): 2473-2480. (in Chinese)) [3] 殷跃平. 三峡库区边坡结构及失稳模式研究[J]. 工程地质学报, 2005, 13(2): 145-154. (YIN Yue-ping.Human-cutting slope structure and failure pattern at the Three Gorge Reservoir[J]. Journal of Engineering Geology, 2005, 13(2): 145-154. (in Chinese)) [4] 李愿军, 黄国良. 对水库诱发地震的两点认识[J]. 震灾防御技术, 2008, 3(1): 61-71. (LI Yuan-jun, HUANG Guo-liang.Some thoughts on reservoir-induced earthquakes[J]. Technology for Earthquake Disaster Prevention, 2008, 3(1): 61-71.(in Chinese)) [5] 罗佳宏. 长江三峡库区三维速度成像与微震活动性研究[D].北京: 中国地震局地质研究所, 2016. (LUO Jia-hong.A study on the three-dimensional velocity structure imaging from tomography and micro seismicity in the three gorges reservoir area[D]. Beijing: Institute of Geology, China Earthquake Administration, 2016. (in Chinese)) [6] NAPIER J A L, PCIRCC A P. The use of a multiple expansion techniques to analyze large scale fracture process and seismic recurrence effects in deep level mines[J]. International Journal of Rock Mechanics & Mining Sciences,1997, 34(3/4): 680-691. [7] HAO H, WU C H, ZHOU Y X.Numerical analysis of blast-induced stress waves in a rock mass with anisotropic continuum damage models: part l equivalent material property approach[J]. Rock Mechanics and Rock Engineering, 2002, 35(2): 79-93. [8] 刘蕾, 陈亮, 崔振华, 等. 逆层岩质边坡地震动力破坏过程 FLAC/PFC2D耦合数值模拟分析[J]. 工程地质学报, 2014, 22(6): 1257-1262. (LIU Lei, CHEN Liang, CUI Zhen-hua, et al.FLAC/PFC2D hybrid simulation for seismically induced failure process of toppling rock slope[J]. Journal of Engineering Geology, 2014,22(6): 1257-1262. (in Chinese)) [9] 胡训健, 卞康, 李鹏程, 等. 水平厚层状岩质边坡地震动力破坏过程颗粒流模拟[J]. 岩石力学与工程学报, 2017, 36(9): 2156-2168. (HU Xun-jian, BIAN Kang, LI Peng-cheng, et al.Simulation of dynamic failure process of horizontal thick-layered rock slopes using particle flow code[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(9): 2156-2168. (in Chinese)) [10] 简文彬, 洪儒宝, 樊秀峰, 等. 循环荷载下节理岩体边坡动力响应的试验研究[J]. 岩石力学与工程学报, 2016, 35(12): 2409-2416. (JIAN Wen-bin, HONG Ru-bao, FAN Xiu-feng, et al.Experimental study of dynamic response of jointed rock slopes under cyclic loads[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(12): 2409-2416. (in Chinese)) [11] 刘汉香, 许强, 范宣梅, 等. 地震动强度对斜坡加速度动力响应规律的影响[J]. 岩土力学, 2012, 33(5): 41-47. (LIU Han-xiang, XU Qiang, FAN Xuan-mei1, et al. Influence of ground motion intensity on dynamic response laws of slope accelerations[J]. Rock and Soil Mechanics, 2012, 33(5): 41-47.(in Chinese)) [12] 毛文涛. 顺层岩质边坡动力破坏机制振动台试验研究[D].成都: 西南交通大学, 2017. (MAO Wen-tao.The shaking table test study of dynamic failure mechanism of bedding rock slope[D]. Chengdu: Southwest Jiaotong University, 2017. (in Chinese)) [13] 刘云鹏, 邓辉, 黄润秋, 等. 反倾软硬互层岩体边坡地震响应的数值模拟研究[J]. 水文地质工程地质, 2012, 39(3): 30-37. (LIU Yun-peng, DENG Hui, HUANG Run-qiu, et al.Numerical simulation of seismic response of antidumping rock slop interbedded by hard and soft layers[J]. Hydrogeology & Engineering Geology, 2012, 39(3): 30-37. (in Chinese)) [14] 江洎洧. 频发微震作用下三峡库首段典型滑坡变形机制及动力响应研究[D]. 北京: 中国地质大学, 2012. (JIANG Ji-wei.Research on the deformation mechanism and dynamic response of typical landslides in three gorges reservoir in case of frequent microseisms[D]. Beijing: China University of Geosciences, 2012. (in Chinese)) [15] LI D L, LIU X R, LI X W, et al.The impact of microearthquakes induced by reservoir water level rise on stability of rock slope[J]. Shock and Vibration, 2016(2): 1-13. [16] 陈剑, 李晓, 杨志法. 三峡库区滑坡的时空分布特征与成因探讨[J]. 工程地质学报, 2005, 13(3): 305-309. (CHEN Jian, LI Xiao, YANG Zhi-fa.On the distribution and mechanism of landslides in the Three Gorges Reservoir Area[J]. Journal of Engineering Geology, 2005, 13(3): 305-309. (in Chinese)) [17] 杨达源, 李徐生, 柯贤坤, 等. 长江三峡坝区河谷深槽的地貌特征及其成因[J]. 地理学报, 2002, 57(5): 547-552. (YANG Da-yuan, LI Xu-sheng, KE Xian-kun, et al.Geomorphic features and origin of the valley bottom troughs at the site of three gorges dam[J]. Acta Geographica Sinica, 2002, 57(5): 547-552. (in Chinese)) [18] 李祥龙, 唐辉明. 逆层岩质边坡地震动力破坏离心机试验研究[J]. 岩土工程学报, 2014, 36(4): 687-694. (LI Xiang-long, TANG Hui-ming.Dynamic centrifugal modelling tests on toppling rock slopes[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 687-694. (in Chinese)) [19] 刘汉香. 基于振动台试验的岩质斜坡地震动力响应规律研究[D]. 成都: 成都理工大学, 2014. (LIU Han-xiang.Seismic responses of rock slopes in a shaking table test[D]. Chengdu: Chengdu University of Technology, 2014. (in Chinese)) [20] BRAND L.The Pi theorem of dimensional analysis[J]. Archive for Rational Mechanics & Analysis, 1957, 1(1): 35-45. [21] 曹树谦. 振动结构模态分析:理论、实验与应用[M]. 天津:天津大学出版社, 2001. (CAO Shu-qian.Modal analysis of vibration structure: theory, experiment and application[M]. Tianjin: Tianjin University Press, 2001. (in Chinese))