New experimental method for loess collapsibility using centrifugal model tests
XING Yi-chuan1, JIN Song-li1, ZHAO Wei-quan1, ZHANG Ai-jun2, AN Peng3, ZHANG Bo2
1. China Institute of Water Resources and Hydro-power Research, Beijing 100048, China; 2. College of .Water Resources and Architectural Engineering, Northwest A&F University, Yangling 712100, China; 3. College of Geology Engineering & Geomatics, Chang'an University, Xi'an 710054, China
Abstract:The methods for loess collapsibility mainly include field immersion testing method and laboratory testing method. A majority of the results of laboratory testing method differ greatly from the engineering practice. The disadvantages of field immersion testing method are high cost and long testing period. Therefore, a different approach is required. A type of strong collapsible loess under overburden pressure from Ili, Xinjiang is tested based on centrifugal model tests. The results of centrifugal model tests are compared with those of field immersion tests and conventional laboratory collapsible loess tests. The experimental study demonstrates that the Single-line and double-line methods are applicable in measuring the loess collapsibility using centrifugal model tests. The coefficient of lateral earth pressure obtained from the centrifugal model tests is comparable with the value measured by the conventional laboratory tests. The results obtained from the centrifugal model tests are proposed using the correction parameter . The good agreement in the experimental study using centrifugal model tests and the field immersion tests shows that the proposed method can be used as an effective method in measuring loess collapsibility.
邢义川, 金松丽, 赵卫全, 张爱军, 安鹏, 张博. 基于离心模型试验的黄土湿陷试验新方法研究[J]. 岩土工程学报, 2017, 39(3): 389-398.
XING Yi-chuan, JIN Song-li, ZHAO Wei-quan, ZHANG Ai-jun, AN Peng, ZHANG Bo. New experimental method for loess collapsibility using centrifugal model tests. Chinese J. Geot. Eng., 2017, 39(3): 389-398.
[1] 刘祖典. 黄土力学与工程[M]. 西安: 陕西科学技术出版社, 1997. (LIU Zu-dian. Mechanics and engineering of loess[M]. Xi'an: Shannxi Science and Technology Press, 1997. (in Chinese)) [2] GB 50025—2004 湿陷性黄土地区建筑规范[S]. 北京:中国建筑工业出版社, 2004. (GB 50025—2004 Code for building construction in collapsible loess regions[S]. Bingjing: China Architecture and Building Press, 2004. (in Chinese)) [3] 陈正汉, 刘祖典. 黄土的湿陷变形机理[J]. 岩土工程学报, 1986, 8(2): 1-12. (CHEN Zheng-han, LIU Zu-dian. Mechanism of collapsible deformation of loess[J]. Chinese Journal of Geotechnical Engineering, 1986, 8(2): 1-12. (in Chinese)) [4] 邢义川, 谢定义, 李永红. 非饱和黄土湿陷过程中有效应力变化规律[J]. 岩石力学与工程学报, 2004, 23(7): 1100-1103. (XING Yi-chuan, XIE Ding-yi, LI Yong-hong. Effective stress and collapse process of unsaturated loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(7): 1100-1103. (in Chinese)) [5] 邢义川, 李京爽, 李 振. 湿陷性黄土与膨胀土的分级增湿变形特性试验研究[J]. 水利学报, 2007, 38(5): 546-551. (XING Yi-chuan, LI Jing-shuang, LI Zhen. Deformation characteristics of collapsible loess and expansive soil under the condition of wetted in stages[J]. Journal of Hydraulic Engineering, 2007, 38(5): 546-551. (in Chinese)) [6] 杜延龄, 韩连冰. 土工离心模拟试验技术[M]. 北京: 中国水利水电出版社, 2010. (DU Yan-ling, HAN Lian-bing. Geotechnical centrifuge model test technology[M]. Beijing: China's Water Conservancy and Hydropower Press, 2010. (in Chinese)) [7] 翁效林. 强夯黄土地基震陷性离心试验研究[J]. 岩土工程学报, 2007, 29(7): 1094-1097. (WENG Xiao-lin. Studies on seismic subsidence of loess by centrifugal model tests[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(7): 1094-1097. (in Chinese)) [8] 王玉峰, 程谦恭, 黄英儒. 不同支护模式下黄土高边坡开挖变形离心模型试验研究[J]. 岩石力学与工程学报, 2014, 33(5): 1032-1046. (WANG Yu-feng, CEHGN Qian-gong, HUANG Ying-ru. Centrifuge tests on excavation of high loess slope with different reinforcement modes[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(5): 1032-1046. (in Chinese)) [9] 龚成明, 程谦恭, 刘争平. 黄土边坡开挖与支护效应的离心模型试验研究[J]. 岩土力学, 2010, 31(11): 3481-3486. (GONG Cheng-ming, CHENG Qian-gong, LIU Zheng-ping. Centrifuge model tests on excavation and reinforcement effect of loess slope[J]. Rock and Soil Mechanics, 2010, 31(11): 3481-3486. (in Chinese)) [10] 张爱军, 邢义川, 胡新丽, 等. 伊犁黄土强烈自重湿陷性的影响因素分析[J]. 岩土工程学报, 2016, 38(增刊2): 117-122. (ZHANG Ai-jun, XING Yi-chuan, HU Xin-li, et al. Influence factors of strong self-weight collapsibility of Ili loess[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(S2): 117-122. (in Chinese)) [11] 刘保健, 支喜兰, 谢永利, 等. 公路工程中黄土湿陷性问题分析[J]. 中国公路学报, 2005, 18(4): 27-31. (LIU Bao-jian, ZHI Xi-lan, XIE Yong-li, et al. Analysis of problems on loess hydrocompaction in highway engineering[J]. China Journal of Highway and Transport, 2005, 18(4): 27-31. (in Chinese)) [12] 张苏民, 郑建国. 力和水作用先后次序对湿陷性黄土力学形状的影响[J]. 勘察科学技术, 1990(3): 10-14. (ZHANG Su-min, ZHENG Jian-guo. Sequence effect of load application and water saturation on the mechanical behavior of collapsible loess[J]. Site Investigation Science and Technology, 1990(3): 10-14. (in Chinese)) [13] 焦五一. 我国各地黄土湿陷系数的不等价问题[J]. 工程勘察, 1982(4): 62-64. (JIAO Wu-yi. The inequitable problems of coefficient of collapsibility of loess in our country[J]. Geotechnical Investigation & Surveying, 1982(4): 62-64. (in Chinese))