Abstract:The temperature-controlled cyclic triaxial tests on Ningbo soft clay are carried out to study cumulative deformation, pore pressure, damping ratio and dynamic modulus of soils under different temperatures and undrained conditions. A strain constitutive model is developed considering the effects of temperature, initial static deviator stress, confining pressure, overconsolidation ratio and other factors, and the relationship between the model parameters and temperature is obtained. It is shown that the temperature has great influence on the cumulative plastic deformation, pore pressure, damping ratio and dynamic modulus of soils. The cumulative plastic strain, pore pressure and damping ratio decrease gradually with the increase of temperature, and the dynamic elastic modulus increases with the increase of temperature, thus heat hardening characteristic is revealed. In addition, the calculated results using the strain constitutive model considering the influence of temperature are consistent with the experimental ones, which verify the rationality of the model. Furthermore, the proposed model can be used to predict the cumulative plastic strain results of soils under the same condition of arbitrary temperature.
刘干斌, 范思婷, 陈斌, 陶海冰, 叶俊能. 考虑温度影响的饱和软黏土累积变形特性研究[J]. 岩土工程学报, 2016, 38(7): 1238-1245.
LIU Gan-bin, FAN Si-ting, CHEN Bin, TAO Hai-bing, YE Jun-neng. Characteristics of cumulative deformation of saturated soft clay considering temperature effect. Chinese J. Geot. Eng., 2016, 38(7): 1238-1245.
[1] HOUSTON S L, HOUSTON W L, WILLIAMS N D. Thermo- Mechanical behaviour of seafloor sediments[J]. Journal of Geotechnical Engineering, 1985, 111(11): 1249-1263. [2] KUNTIWATTANAKUL P, TOWHATA I, OHISHI K, et al. Temperature effects on undrained shear characteristics of clay[J]. Soils and Foundations,1995, 35(1): 147-162. [3] MITCHEL J K. Shearing resistance of soils as a rate process[J]. Journal of Soil Mechanics and Foundation Engineering Division.1964, 90(1): 231-251. [4] ABUEL-NAGA H M, BERGADO D T, BOUAZZA A, et al. Thermomechanical model for saturated clays[J]. Géotechnique, 2009, 59(3): 273-278. [5] LALOUI L, CEKEREVAC C. Non-isothermal plasticity model for cyclic behaviour of soils[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32(5): 437-460. [6] 焦贵德, 赵淑萍, 马 巍, 等. 循环荷载下冻土的滞回圈演化规律[J]. 岩土工程学报, 2013, 35(7): 1343-1349. (JIAO Gui-de, ZHAO Shu-ping, MA Wei, et al. Evolution laws of hysteresis loops of frozen soil under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(7): 1343-1349. (in Chinese)) [7] 焦贵德, 赵淑萍, 马 巍, 等. 循环荷载下高温冻土的变形和强度特性[J]. 岩土工程学报, 2013, 35(8): 1553-1558. (JIAO Gui-de, ZHAO Shu-ping, MA Wei, et al. Deformation and strength of warm frozen soils under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1553-1558. (in Chinese)) [8] 罗 飞, 赵淑萍, 马 巍, 等. 分级循环荷载作用下冻土动应变幅值的试验研究[J]. 岩土力学, 2014, 35(1): 123-129. (LUO Fei, ZHAO Shu-ping, MA Wei, et al. Experimental study of dynamic strain amplitude of frozen soil under stepped axial cyclic loading[J]. Rock and Soil Mechanics, 2014, 35(1): 123-129. (in Chinese)) [9] 刘干斌, 范思婷, 叶俊能, 等. 温控动三轴试验装置的研制及应用[J]. 岩石力学与工程学报, 2015, 34(7): 1345-1352. (LIU Gan-bin, FAN Si-ting, YE Jun-neng, et al. Application and development of a temperature-controlled dynamic triaxial test system[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(7): 1345-1352. (in Chinese)) [10] 叶俊能, 范思婷, 刘干斌, 等. 淤泥质粉质黏土温控动三轴试验研究[J]. 中国铁道科学, 2015, 36(4): 1-7. (YE Jun-neng, FAN Si-ting, LIU Gan-bin, et al. Temperature- controlled dynamic experimental study of mucky silty clay[J]. China Railway Science, 2015, 36(4): 1-7. (in Chinese)) [11] 白 冰, 张鹏远, 贾丁云, 等. 不同幅值温度荷载下一种饱和红黏土的固结效应[J]. 岩土工程学报, 2013, 35(11): 1972-1978. (BAI Bing, ZHANG Peng-yuan, JIA Ding-yun, et al. Consolidation effects of a saturated red clay subjected to temperature loading with different amplitudes[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 1972-1978. (in Chinese)) [12] MONISMITH C L, OGAWA N, FREEME C R. Permanent deformation characteristics of subsoil due to repeated loading[J]. Transport Research Record, 1975, 537: 1-17. [13] LI D, SELIG E T. Cumulative plastic deformation for fine-grained subgrade soils[J]. Journal of Geotechnical Engineering, ASCE, 1996, 122(12): 1006-1013. [14] CHAI J C, MIURA N. Traffic-load-induced permanent deformation of road on soft subsoil[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2002, 128(11): 907-916. [15] 黄茂松, 李进军, 李兴照. 饱和软黏土的不排水循环累积变形特性[J]. 岩土工程学报, 2006, 28(7): 891-895. (HUANG Mao-song, LI Jin-jun, LI Xing-zhao. Cumulative deformation behaviour of soft clay in cyclic undrained tests[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(7): 891-895. (in Chinese)) [16] 黄茂松, 姚兆明. 循环荷载下饱和软黏土的累积变形显式模型[J]. 岩土工程学报, 2011, 33(3): 325-311. (HUANG Mao-song, YAO Zhao-ming. Explicit model for cumulative strain of saturated clay subjected to cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(3): 325-311. (in Chinese)) [17] 刘 明, 黄茂松, 柳艳华. 车振荷载引起的软土越江隧道长期沉降分析[J]. 岩土工程学报, 2009, 31(11): 1703-1709. (LIU Ming, HUANG Mao-song, LIU Yan-hua. Long-term settlement of tunnels across a river induced by vehicle operation[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(11): 1703-1709. (in Chinese)) [18] 祁 良, 郑荣跃, 陶海冰, 等. 考虑温度影响的宁波软土临界状态参数研究[J]. 水文地质工程地质, 2015, 42(5): 79-83. (QI Liang, ZHENG Rong-yue, TAO Hai-bing, et al. Study on critical state parameter of Ningbo soft clay considering the effect of temperature[J]. Hydrogeology Engineering Geology, 2015, 42(5): 79-83. (in Chinese)) [19] LALOUI L, CEKEREVAC C. Thermo-plasticity of clays: an isotropic yield mechanism[J]. Comput Geotech, 2003, 30(8): 649-660.