Combination reinforcement mechanism of sub-horizontal jet-grouting and pipe roof in water-rich soft stratum
SHI Yu-feng1, CAI Li-ping2, YANG Jun-sheng3, HU Wen-tao1
1. School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, China; 2. Guangzhou Railway(Group) Corporation, Guangzhou 510010, China; 3. Central South University, Civil Engineering School, Changsha 410075 China
Abstract:The horizontal jet-grouting pile, which is applicable in soil reinforcement and water isolation, is hard to assemble an ideal homogeneous sealed pre-reinforced shell accounting for the restriction of geological condition, material characters and construction technology. For improvement, a composite pre-reinforcement technique utilizing horizontal jet-grouting piles and large pipe shed is proposed. The corresponding 3-D numerical model considering fluid-solid coupling effects is established using FLAC3D for further analysis. The results show that the range of the plastic zone decreases by adding extra pipe shed beneath the piles. The “arch support effect” of piles in horizontal direction and “beam support effect” of shed in vertical direction can be fulfilled. With this technique, the value of the stretch stress of the horizontal rotary jet-grouting piles will be reduced, which results in better stability and reinforcement effect of piles. This technique is successful applied in the water-rich section of Jiangmen tunnel in Guangzhou-Zhuhai Railway, which may provide suggestions for similar projects.
石钰锋, 蔡理平, 阳军生, 胡文韬. 富水软弱地层隧道水平旋喷与大管棚预支护研究及应用[J]. 岩土工程学报, 2015, 37(zk2): 101-106.
SHI Yu-feng, CAI Li-ping, YANG Jun-sheng, HU Wen-tao. Combination reinforcement mechanism of sub-horizontal jet-grouting and pipe roof in water-rich soft stratum. Chinese J. Geot. Eng., 2015, 37(zk2): 101-106.
[1] TONON F. ADECO full-face tunnel excavation of two 260 m 2 tubes in clays with sub-horizontal jet-grouting under minimal urban cover[J]. Tunnelling and Underground Space Technology, 2011, 26(2): 253-266. [2] FlORA A, LIGNOLA G P, MANFREDI G. A semi- probabilistic approach to the design of jet grouted umbrellas in tunneling[J]. Ground Improvement, 2007, 11(4): 207-217. [3] 石钰锋, 阳军生, 邵华平, 等. 超浅覆大断面暗挖隧道下穿富水河道施工风险分析及控制研究[J]. 岩土力学, 2012, 33(增刊2): 229-234. (SHI Yu-feng, YANG Jun-sheng, SHAO Hua-ping, et al. Risk analysis and control study of super-shallow tunnel with largecross-section under water-rich channel[J]. Rock and Soil Mechanics, 2012, 33(S2): 229-234. (in Chinese)) [4] NIKBAKHTAN B, OSANLOO M. Effect of grout pressure and grout flow on soil physical and mechanical properties in jet grouting operations[J]. International Journal of Rock Mechanics & Mining Sciences, 2009, 46: 498-505. [5] COULTER S, MARTIN C D. Effect of jet-grout on surface settlements above the Aescher tunnel, Switzerland[J]. Tunnelling and Underground Space Technology, 2006, 21: 542-553. [6] PICHLER C, LACKNER R, MARTAK L, et al. Optimization of jet-grouted support in NATM tunneling[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2004, 28: 781-796. [7] 孙星亮, 王海珍. 水平旋喷固结体力学性能试验及分析[J].岩石力学与工程学报, 2003, 22(5): 1695-1698. (SUN Xing-liang, WANG Hai-zhen. Testing on physical and mechanical properties of horizontal jet-grouted soilcrete[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(5): 1695-1698. (in Chinese)) [8] 刘 钟, 柳建国, 张 义, 等. 隧道全方位高压喷射注浆拱棚超前支护新技术[J]. 岩石力学与工程学报, 2009, 28(1): 59-65. (LIU Zhong, LIU Jian-guo, ZHANG Yi, et al. New technique of rotary horizontal jet grouting for arched tunnel pre-support[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(1): 59-65.(in Chinese)) [9] 柳建国, 张慧乐, 张慧东, 等. 水平旋喷拱棚新工艺与载荷试验研究[J]. 岩土工程学报, 2011, 33(6): 921-927. (LIU Jian-guo, ZHANG Hui-dong, ZHANG Hui-le, et al. New technology and loading tests of horizontal jet grouting arch [J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 921-927. (in Chinese)) [10] 张慧乐, 张慧东, 王述红, 等. 水平旋喷拱棚结构的承载特性及机理研究[J]. 土木工程学报, 2012, 45(8): 131-139. (ZHANG Hui-le, ZHANG Hui-dong, WANG Shu-hong, et al. Study on the bearing characteristics and mechanism of horizontal jet grouting arch structures[J]. China Civil Engineering Journal, 2012, 45(8): 131-139. (in Chinese)) [11] 中铁第四勘察设计院集团有限公司. 江门隧道暗挖段勘察设计报告[R]. 武汉: 中铁第四勘察设计院集团有限公司, 2008. (China Railway Siyuan Survey and Design Group Co., LTD. Survey and design report of Jiangmen tunnel excavation[R]. Wuhan: China Railway Siyuan Survey and Design Group Co., LTD.2008. (in Chinese)) [12] Itasca Consulting Group, Inc..FLAC3D Fluid-mechanical interaction(Version 2.1)[R]. Itasca Consulting Group, Inc., 2003. [13] YOO C. Interaction between tunneling and groundwater- numerical investigation using three dimensional stress-pore pressure coupled analysis[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(2): 240-250.