Constitutive modeling for granular materials considering grading effect
LIU Ying-jing1, 2, 3, WANG Jian-hua1, YIN Zhen-yu1, 2, LI Gang2, 4, XIA Xiao-he1
1. Department of Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; 2. Research Institute in Civil and Mechanical Engineering, UMR CNRS, 6183, Ecole Centrale Nantes, Nantes 44300, France; 3. Shanghai Tunnel Engineering & Rail Transit Design and Research Institute, Shanghai 200235, China; 4. Jinan Rail Transit Group Co., Ltd., Jinan 250101, China
Abstract:The granular materials are widely used in geotechnical engineering, whose grading changing feature will affect their mechanical behavior obviously, especially the bearing capacity. In order to well describe the influence of grain-size distribution on the mechanical behavior of granular materials, a simple constitutive model taking into account the grading-dependent critical state line is developed within the framework of elasto-plasticity and the critical state theory. The model is used to simulate the drained and undrained triaxial compression tests on different types of granular materials (DEM ideal sphere, artificial material glass ball and natural material Hostun sand). It is found that only one group of grading-dependent critical state parameters is needed for describing the mechanical response of granular materials with different gradings.
[1] INDRARATNA B, WIJEWARDENA L S S, BALASUBRAMANIAM A S. Large-scale triaxial testing of grey wacke rockfill[J]. Géotechnique, 1993, 43(1): 37-51. [2] GHANBARI A, SADEGHPOUR A H, MOHAMADZADEH H, et al. An experimental study on the behavior of rockfill materials using large scale tests[J]. Electronic Journal of Geotechnical Engineering, 2008, 13: 1-16. [3] 张家铭, 蒋国盛, 汪 稔. 颗粒破碎及剪胀对钙质砂抗剪强度影响研究[J]. 岩土力学, 2009, 30(7): 2043-2048. (ZHANG Jia-ming, JIANG Guo-sheng, WANG Ren. Research on influences of particle breakage and dilatancy on shear strength of calcareous sands[J]. Rock and Soil Mechanics, 2009, 30(7): 2043-2048. (in Chinese)) [4] 尹振宇, 许强, 胡伟. 考虑颗粒破碎效应的粒状材料本构研究: 进展及发展[J]. 岩土工程学报, 2012, 34(12): 2170-2180. (YIN Zhen-yu, XU Qiang, HU Wei. Constitutive relations for granular materials considering particle crushing: review and development[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2170-2180. (in Chinese)) [5] COOP M R. The mechanics of uncemented carbonate sands[J]. Géotechnique, 1990, 40(4): 607-626. [6] VERDUGO R, DE LA Hoz K. Strength and stiffness of coarse granular soils[M]// Soil Stress-Strain Behavior: Measurement, Modeling and Analysis. Berlin: Springer Netherlands, 2007: 243-252. [7] BIAREZ J, HICHER P Y. Influence de la granulométrie et de son evolution par ruptures de grains sur le comportement mécanique de matériaux granulaires[J]. Revue Francaise de Genie Civil, 1997, 1(4): 607-631. (BIAREZ J, HICHER P Y. Influence of evolution of gradation induced by particle repture on the mechanical behavior of granular material. French Journal of Civil Engineering, 1997, 1(4): 607-631. (in Frence)) [8] DAOUADJI A, HICHER P Y, RAHMA A. An elastoplastic model for granular materials taking into account grain breakage[J] . European Journal of Mechanics-A/Solids, 2001, 20(1): 113-137. [9] 李罡, 刘映晶, 尹振宇, 等. 粒状材料临界状态的颗粒级配效应[J]. 岩土工程学报, 2014. 36(3): 452-457. (LI Gang, LIU Ying-jing, YIN Zhen-yu, et. al. Grading effect on critical state behavior of granular materials[J]. Chinese Journal of Geotechnical Engineering, 2014. 36(3): 452-457. (in Chinese)) [10] 栾茂田, 刘鹏, 王忠涛. 考虑剪切中主应力方向的砂土本构模型[J]. 水利学报, 2013, 44(4): 470-477. (LUAN Mao-tian, LIU Peng, WANG Zhong-tao. Constitutive model of sand considering shearing orientation of principal stress[J]. Journal of Hydraulic Engineering, 2013, 44(4): 470-477. (in Chinese)) [11] 罗刚, 张建民. 考虑物理状态变化的砂土本构模型[J]. 水利学报, 2004, 35(7): 26-31. (LUO Gang, ZHANG Jian-min. Constitutive model for sand considering the variation of its physical state[J]. Journalo of Hydraulic Engineering, 2004, 35(7): 26-31. (in Chinese)) [12] LI X S, DAFALIAS Y F. Anisotropic critical state theory: role of fabric[J]. Journal of Engineering Mechanics, 2011, 138(3): 263-275. [13] 黄茂松, 李学丰, 贾苍琴. 基于材料状态相关临界状态理论的砂土双屈服面模型[J]. 岩土工程学报, 2010, 32(11): 1764-1771. (HUANG Mao-song, LI Xue-feng, JIA Cang-qin. A double yield surface constitutive model for sand based on state-dependent critical state theory[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1764-1771. (in Chinese)) [14] 张卫华, 赵成刚, 傅方. 饱和砂土相变状态边界面本构模型[J]. 岩土工程学报, 2013, 35(5): 930-939. (ZHANG Wei-hua, ZHAO Cheng-gang, FU Fang. Bounding-surface constitutive model for saturated sands based on phase transformation state[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 930-939. (in Chinese)) [15] WOOD D M, MAEDA K, NUKUDANI E. Modelling mechanical consequences of erosion[J]. Géotechnique, 2010, 60(6): 447-457. [16] RICHART F E, HALL J R, WOODS R D. Vibrations of soils and foundations[M]. Englewood Cliffs: Prentice-Hall, 1970. [17] LI X S, DAFALIAS Y F. Dilatancy for cohesionless soils[J]. Géotechnique, 2000, 50(4): 449-460. [18] VERMEER P A. A double hardening model for sand[J]. Géotechnique, 1978, 28(4): 413-433. [19] HU W, YIN Z Y, DANO C, et al. A constitutive model for granular materials considering grain breakage[J]. Science China Technological Sciences, 2011, 54(8): 2188-2196. [20] ISHIHARA K. Liquefaction and flow failure during earthquakes[J]. Géotechnique, 1993, 43(3): 351-451.. [21] LUONG M P. Stress-strain aspects of cohesionless soils under cyclic and transient loading[C]// Proc Int Symp on Soils under Cyclic and Transient Loading. Rotterdam: A A Balkema, 1980: 315-324. [22] ROSCOE K H, SCHOFIELD A N, WROTH C P. On the yielding of soils[J]. Géotechnique, 1958, 8(1): 22-53. [23] BEEN K, JEFFERIES M G, HACHEY J. The critical state of sands[J]. Géotechnique, 1991, 41(3): 365-381. [24] BIAREZ J, HICHER P Y. Elementary mechanics of soil behaviour: saturated remoulded soils[M]. Rotterdam: A A Balkema, 1994. [25] YAN W M, DONG J. Effect of particle grading on the response of an idealized granular assemblage[J]. International Journal of Geomechanics, 2011, 11(4): 276-285. [26] HARDIN B O. Crushing of soil particles[J]. Journal of Geotechnical Engineering, 1985, 111(10): 1177-1192.