Abstract:By coupling the explicit finite element method with the viscous-spring artificial boundary condition, the formulae for calculating the equivalent nodal force under the oblique incidence of plane seismic SV waves are deduced. Then, the input of SV waves is realized in the FEM program. A half-space example with simple motion proves that the proposed approach has satisfactory precision. Subsequently, the proposed method is employed to investigate the rock tunnels with two oblique incidence conditions of cross section and vertical section. The numerical results indicate that under the action of obliquely incident seismic waves, the dynamic responses of rock tunnel are clearly different from those under the action of vertically incident seismic waves. In addition, the dynamic responses of the rock tunnels vary greatly with the incidence of SV waves in cross section and vertical section.
杜修力, 黄景琦, 赵密, 金浏. SV波斜入射对岩体隧道洞身段地震响应影响研究[J]. 岩土工程学报, 2014, 36(8): 1400-1406.
DU Xiu-li, HUANG Jing-qi, ZHAO Mi, JIN Liu. Effect of oblique incidence of SV waves on seismic response of portal sections of rock tunnels. Chinese J. Geot. Eng., 2014, 36(8): 1400-1406.
[1] KAZUHIDE Y, YOSHIYUKI K, et al. Historical earthquake damage to tunnels in Japan and case studies of railway tunnels in the 2004 Niigataken-Chuetsu Earthquake[J]. QR of RTRI, 2007,48(3): 136-141. [2] WANG W L, WANG T T, Su J J, et al. Assessment of damage in mountain tunnels due to the Taiwan Chi-Chi Earthquake[J]. Tunneling and Underground Space Technology, 2001, 16: 133-150. [3] LI T B. Damage to mountain tunnels related to the Wenchuan earthquake and some suggestions for a seismic tunnel construction[J]. Bull Eng Geol Environ, 2012, 71: 297-308. [4] WANG Z Z, GAO B, JIANG Y J, et al. Investigation and assessment on mountain tunnels and geotechnical damage after the Wenchuan earthquake[J]. Technological Sciences, 2009, 52(2): 546-558. [5] 郑颖人, 肖 强, 叶海林, 等. 地震隧洞稳定性分析探讨[J]. 岩石力学与工程学报, 2010, 29(6): 1081-1088. (ZHENG Ying-ren, XIAO Qiang, YE Hai-lin, et al. Study of tunnel stability analysis with seismic load[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(6): 1081-1088. (in Chinese)) [6] 陈厚群. 坝址地震动输入机制探讨[J]. 水利学报, 2006, 37(12): 1417-1423. (CHEN Hou-qun. Discussion on seismic input mechanism at dam site[J]. Journal of Hydraulic Engineering, 2006, 37(12): 1417-1423. (in Chinese)) [7] 潘旦光, 楼梦麟, 范立础. 多点输入下大跨度结构地震反应分析研究现状[J]. 同济大学学报, 2001, 29(10): 1213-1219. (PAN Dan-guang, LOU Meng-lin, FAN Li-chu. Status of seismic response analysis of long-span structures under multiple support excitations[J]. Journal of Tongji University. 2001, 29(10): 1213-1219. (in Chinese)) [8] 李小军. 非线性场地地震反应分析方法的研究[D]. 哈尔滨: 中国地震局工程力学研究所, 1993. (LI Xiao-jun. Study on the method of analyzing the earthquake response of nonlinear site[D]. Harbin: institute of Engineering Mechanics, China Earthquake Administration, 1993. (in Chinese)) [9] 赵建锋, 杜修力, 韩 强, 等. 外源波动问题数值模拟的一种实现方式[J]. 工程力学, 2007, 24(4): 52-58. (ZHAO Jian-feng, DU Xiu-li, HAN Qiang, et al. An approach to numerical simulation for external source wave motion[J]. Engineering Mechanics, 2007, 24(4): 52-58. (in Chinese)) [10] 杜修力, 陈 维, 李 亮, 等. 斜入射条件下地下结构时域地震反应分析初探[J]. 震灾防御技术, 2007, 2(3): 290-296. (DU Xiu-li, CHEN Wei, LI Liang, et al. Preliminary study of time-domain seismic response for underground structures to obliquely incident seismic waves[J]. Technology for Earthquake Disaster Prevention, 2007, 2(3): 290-296. (in Chinese)) [11] 赵宝友, 马震岳, 丁秀丽. 不同地震动输入方向下的大型地下岩体洞室群地震反应分析[J]. 岩石力学与工程学报, 2010, 29(增刊1): 3396-3402. (ZHAO Bao-you, MA Zhen-yue, DING Xiu-li. Seismic response of a large underground rock cavern groups considering different incident angles of earthquake waves[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S1): 3396-3402. (in Chinese)) [12] 马行东, 李海波. 地震波入射方向对地下岩体洞室动态响应的初步分析[J]. 水力发电, 2007, 33(1): 23-25. (MA Xing-dong, LI Hai-bo. Primary analysis of different incidence propagation on dynamic response of underground rock cavern under earthquake[J]. Water Power, 2007, 33(1): 23-25. (in Chinese)) [13] 张如林, 楼梦麟. 基于FLAC 3D 的斜入射地震波作用的数值模拟方法研究[J]. 土木工程学报, 2010, 43(增刊1): 22-27. (ZHANG Ru-lin, LOU Meng-lin. Study on numerical simulation of obliquely incident seismic waves based on FLAC 3D [J]. China Civil Engineering Journal, 2010, 43(S1): 22-27. (in Chinese)) [14] 徐海滨, 杜修力, 赵 密, 等. 地震波斜入射对高拱坝地震反应的影响[J]. 水力发电学报, 2011, 30(6): 150-165. (XU Hai-bin, DU Xiu-li, ZHAO Mi, et al. Effect of oblique incidence of seismic waves on seismic responses of high arch dam[J]. Journal of Hydroelectric Engineering, 2011, 30(6): 159-165. (in Chinese)) [15] LYSMER J, KUHLEMEYER R L. Finite dynamic model for infinite media[J]. Journal of the Engineering Mechanics Division, ASCE, 1969, 95(4): 759-877. [16] 廖振鹏, 工程波动理论导论[M]. 北京: 科学出版社, 2002. (LIAO Zhen-peng. Introduction to wave motion theories in engineering[M]. Beijing: Science Press, 2002. (in Chinese)) [17] 刘晶波, 谷 音, 杜义欣. 一致黏弹性人工边界及黏弹性边界单元[J]. 岩土工程学报, 2006, 28(9): 1070-1075. (LIU Jing-bo, GU Yin, DU Yi-xin. Consistent viscous-spring artificial boundaries and viscous-spring boundary elements[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(9): 1070-1075. (in Chinese)) [18] DEEKS A J, RANDOLPH M F. Axisymmetric time-domain transmitting boundaries[J]. Journal of Engineering Mechanics, ASCE, 1994, 120(1): 25-42. [19] 杜修力. 工程波动理论与方法[M]. 北京: 科学出版社, 2009. (DU Xiu-li. Theories and methods of wave motion for engineering[M]. Beijing: Science Press, 2009. (in Chinese))