Abstract:In order to study the influence of the magnesium chloride in the polluted soils on the early strength of cemented soils after 28 days, unconfined compression tests, X-ray Diffraction (XRD) phase tests and scanning electron microscope (SEM) tests are employed to study the mechanism of cement-reinforced soils contaminated by different content magnesium chlorides. The strength test results show that the compressive strength of the cemented soils decreases with the increase of the content of magnesium chlorides. The value reaches its peak when the content is 1.5 g/kg, while it is the lower when the content is greater than 1.5 g/kg. Chemical products are analyzed by means of the XRD tests, and the test results show that chemical products become more, such as M-S-H, M-A-H, CaCl2·6H2O, Mg2(OH)3Cl·4H2O, C3A·CaCl2·12H2O, after the participation of the magnesium chlorides in chemical reactions. Those chemical products play the role of decomposition and crystallization composite action in the chemical reaction process. At the same time, these products change the pore size distribution of cemented soils. From the SEM photos of cemented soil form, the chemical products in the sample with lower magnesium chloride content link the soil particles together, and decrease the porosity. With the increasing content of magnesium chlorides, the gel around soil particles is broken down, and the porosity increases, which make the strength of cement soils decrease.
韩鹏举, 张文博, 刘新, 白晓红. 氯化镁对水泥土早期强度的影响研究[J]. 岩土工程学报, 2014, 36(6): 1173-1178.
HAN Peng-ju, ZHANG Wen-bo, LIU Xin, BAI Xiao-hong. Early strength of cemented soils polluted by magnesium chloride. Chinese J. Geot. Eng., 2014, 36(6): 1173-1178.
[1] GB 50021—2001 岩土工程勘察规范[S]. 2009. (GB 50021—2001 Code for investigation of geotechnical engineering[S]. 2009. (in Chinese)) [2] JGJ 79—2012建筑地基处理技术规范[S]. 2012. (JGJ 79—2012 Technical code for ground treatment of buildings[S]. 2012. (in Chinese)) [3] PERERA A S R, AL-TABBAA A. The influence of different curing environments on the behavior of cement-based grouts used in contaminated soil treatment[J]. Geotechnical Special Publication, 2004, 126(2): 1412-1420. [4] HEINECK K S, LEMOS R G, LAUTENSCHLAGER C E R, et al. Behavior of vertical hydraulic barriers composed by sandy soil, bentonite and cement subjected to alkaline contaminants[C]// Proceeding of Geoflorida 2010: Advance in Analysis, Modeling and Resign. West Plam Beach, 2010: 2462-2471. [5] 邢皓枫, 徐 超, 叶观宝, 等. 可溶盐离子对高含盐水泥土强度影响的机理分析[J]. 中国公路学报, 2008, 21(6): 26-30. (XING Hao-feng, XU Chao, YE Guan-bao, et al. Mechanism analysis of influence of soluble salt rich on strength of salt-rich cement-soil[J]. China Journal of Highway and Transport, 2008, 21(6): 26-30. (in Chinese)) [6] 邢皓枫, 徐超, 叶观宝. 水泥加固高含盐软土的强度和微观结构研究[J]. 同济大学学报(自然科学版), 2008, 36(12): 1606-1610. (XING Hao-feng, XU Chao, YE Guan-ba. Strength and microstructure of salt-rich soft soil improved by cement[J]. Journal of Tongji University (Natural Science), 2008, 36(12): 1606-1610. (in Chinese)) [7] 马冬梅. 可溶盐对水泥土强度影响的微观分析[J]. 公路交通科技, 2008, 25(4):16-21. (MA Dong-mei. Microstructural analysis of influence of soluble ions on strength of cemented soil[J]. Journal of Highway and Transportation Research and Development, 2008, 25(4): 16-21. (in Chinese)) [8] 杨俊杰, 孙涛, 张玥宸. 腐蚀性场地形成的水泥土的劣化研究[J]. 岩土工程学报, 2012, 34(1): 130-138. (YANG Jun-jie, SUN Tao, ZHANG Yue-chen. Deterioration of soil cement stabilized in corrosive site[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 130-138. (in Chinese)) [9] 宁宝宽, 陈四利, 刘斌. 水泥土的环境侵蚀效应与破裂过程分析[J]. 岩石力学与工程学报, 2005, 24(10): 1778-1782. (NING Bao-kuan, CHEN Si-li, LIU Bin. Fracturing behaviors of cemented soil under environmental erosion[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(10): 1778-1782. (in Chinese)) [10] 黄雨, 周子舟, 柏炯, 等. 水泥土搅拌法加固冲填土软土地基的微观试验[J]. 同济大学学报(自然科学版), 2010, 38(7): 997-1001. (HUANG Yu, ZHOU Zi-zhou, BAI Jiong, et al. Micro-experiments in cement-mixed soils on a dredger fill of soft ground[J]. Journal of Tongji University (Natural Science) , 2010, 38(7): 997-1001. (in Chinese)) [11] 王清, 陈慧娥, 蔡可易. 水泥土微观结构特征的定量评价[J]. 岩土力学, 2003, 24(增刊1): 12-16. (WANG Qing, CHEN Hui-e, CAI Ke-yi. Quantitative evaluation of microstructure features of soil contained some cement [J]. Rock and Soil Mechanics, 2003, 24(S1): 12-16. (in Chinese)) [12] 于小军. 水泥土芯样的微观结构特征研究[J]. 四川建筑科学研究, 2010, 36(5): 123-125. (YU Xiao-jun. Research on structure of cemented soil[J]. Sichuan Building Science, 2010, 36(5): 123-125. (in Chinese)) [13] 王梅, 白晓红, 梁仁旺, 等. 生石灰与粉煤灰桩加固软土地基的微观分析[J]. 岩土力学, 2001, 22(1): 67-70. (WANG Mei, BAI Xiao-hong, LIANG Ren-wang, et al. Micro study on soft foundations reinforcement with lime-fly ash piles[J]. Rock and Soil Mechanics, 2001, 22(1): 67-70. (in Chinese)) [14] 崔德山, 项伟. ISS加固红色黏土的孔隙分布试验研究[J]. 岩土力学, 2010, 31(10): 3096-3100. (CUI De-shan, XIANG Wei. Pore diameter distribution test of red clay treated with ISS[J]. Rock and Soil Mechanics, 2010, 31(10): 3096-3100. (in Chinese))