Abstract:By carrying out the in-situ pumping tests on confined aquifer in Tianjin, it is found that the settlement of soils of overlying confined aquifer gradually increases up to down during local relieving, meanwhile, heave appeares in underlying soils. Further analysis, by using three-dimensional fluid-solid coupling numerical model, indicates that the soil-arch effect will form in soils, which has no drawdown and overlies confined aquifer during its local relieving, in the meantime, the additional tensile stress and tensile deformation appeare there, and moreover, the seepage force is the reason why the soils underlying the confined aquifer heave. Furthermore, the law of ground movement induced by long-term local pressure-relief of confined aquifer under different water supplies and site conditions is studied, and the location of the maximum soil settlement under each condition is obtained. The maximum soil settlement appears at the top of stratum which has drawdown under arbitrary water supply conditions, relieving time and permeability ranges of the overlying aquitard. Because the spatial effect of the overlying soils of confined aquifer induced by local pressure-relief of the confined aquifer cannot be taken into account using the layering summation method (LSM), it will underestimate the settlement of soils below the ground surface during its relieving if LSM is adopted based on the settlement correction factor derived from the pumping tests.
郑刚, 曾超峰, 薛秀丽. 承压含水层局部降压引起土体沉降机理及参数分析[J]. 岩土工程学报, 2014, 36(5): 802-817.
ZHENG Gang, ZENG Chao-feng, XUE Xiu-li. Settlement mechanism of soils induced by local pressure-relief of confined aquifer and parameter analysis. Chinese J. Geot. Eng., 2014, 36(5): 802-817.
[1] CHAI J C, SHEN S L, ZHU H H, et al. Land subsidence due to groundwater drawdown in Shanghai[J]. Géotechnique, 2004, 54(2): 143-147. [2] 叶淑君, 薛禹群, 张 云, 等. 上海区域地面沉降模型中土层变形特征研究[J]. 岩土工程学报, 2005, 27(2): 140-147. (YE Shu-jun, XUE Yu-qun, ZHANG Yun, et al. Study on the deformation characteristics of soil layers in regional land subsidence model of Shanghai[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(2): 140-147. (in Chinese)) [3] 杨建民, 郑 刚, 焦 莹. 天津站抽水试验分析[J]. 土木工程学报, 2008, 41(7): 67-70. (YANG Jian-min, ZHENG Gang, JIAO ying. Test and analysis of the aquifer at Tianjin Station[J]. China Civil Engineering Journal, 2008, 41(7): 67-70. (in Chinese)) [4] 杨建民, 郑 刚, 焦 莹. 天津站抽水试验数值反演分析[J]. 土木工程学报, 2010, 43(9): 125-130. (YANG Jian-min, ZHENG Gang, JIAO ying. Numerical back analysis of pumping tests at Tianjin Railway Station[J]. China Civil Engineering Journal, 2010, 43(9): 125-130. (in Chinese)) [5] 张 刚, 梁志荣. 承压水降水引起地表沉降现场试验研究[J]. 岩土工程学报. 2008, 30(增刊): 323-327. (ZHANG Gang, LIANG Zhi-rong. In-situ tests on settlement of ground resulting from dewatering of confined water[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(S0): 323-327. (in Chinese)) [6] 周念清, 唐益群, 娄荣祥, 等. 徐家汇地铁站深基坑降水数值模拟与沉降控制[J]. 岩土工程学报, 2011, 32(12): 1950-1956. (ZHOU Nian-qing, TANG Yi-qun, LOU Rong-xiang, et al. Numerical simulation of deep foundation pit dewatering and land subsidence control of Xujiahui Metro Station [J]. Chinese Journal of Geotechnical Engineering, 2011, 32(12): 1950-1956. (in Chinese)) [7] 王建秀, 吴林高, 朱雁飞, 等. 地铁车站深基坑降水诱发沉降机制及计算方法[J]. 岩石力学与工程学报, 2009, 28(5): 1010-1019. (WANG Jian-xiu, WU Lin-gao, ZHU Yan-fei, et al. Mechanism of dewatering-induced subsidence in deep subway station pit and calculation method[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(5): 1010-1019. (in Chinese)) [8] WONGSORAJ J, SOGA K, MAIR R J. Modelling of long-term ground response to tunnelling under St James's Park, London[J]. Géotechnique, 2007, 57(1): 75-90. [9] NIU W J, WANG Z, CHEN F, et al. Settlement analysis of a confined sand aquifer overlain by a clay layer due to single well pumping[J]. Mathematical Problems in Engineering, 2013(1): 1-13. [10] 王春波, 丁文其, 刘文军, 等. 非稳定承压水降水引起土层沉降分布规律分析[J]. 同济大学学报(自然科学版), 2013, 41(3): 361-367. (WANG Chun-bo, DING Wen-qi, LIU Wen-jun, et al. Distribution law of soil settlement caused by unsteady dewatering of confined water[J]. Journal of Tongji University (Natural Science), 2013, 41(3): 361-367. (in Chinese)) [11] 魏子新. 上海市第四承压含水层应力-应变分析[J]. 水文地质工程地质, 2002(1): 1-4. (WEI Zi-xin. The stress-strain analysis of the 4th confined aquifer in Shanghai City[J]. Hydrogeology and Engineering Geology, 2002(1): 1-4. (in Chinese)) [12] 郑 刚, 曾超峰, 刘 畅, 等. 天津首例基坑工程承压含水层回灌实测研究[J]. 岩土工程学报, 2013, 35(增刊2): 491-495. (ZHENG Gang, ZENG Chao-feng, LIU Chang, et al. Field observation of artificial recharge of confined water in first excavation case in Tianjin[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 491-495. (in Chinese)) [13] PREENE M. Assessment of settlements caused by groundwater control[J]. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering. 2000, 143(4): 177-190. [14] WEN H C, WOLFGANG K. 3D groundwater modeling with PMWIN-A simulation system for modeling groundwater flow and pollution[M]. USA: Springer, 2001: 120-132. [15] 骆祖江, 刘金宝, 李 朗. 第四纪松散沉积层地下水疏降与地面沉降三维全耦合数值模拟[J]. 岩土工程学报, 2008, 30(2): 193-198. (LUO Zu-jiang, LIU Jin-bao, LI Lang. Three-dimensional full coupling numerical simulation of groundwater dewatering and land-subsidence in quaternary loose sediments[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(2): 193-198. (in Chinese)) [16] 许 胜, 缪俊发, 魏建华, 等. 深基坑降水与地面沉降的三维黏弹性全耦合数值模拟[J]. 岩土工程学报, 2008, 30(增刊): 41-45. (XU Sheng, MIAO Jun-fa, WEI Jian-hua, et al. Numerical simulation of dewatering of foundation pits and land subsidence based on 3D viscoelastic coupling model[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(S0): 41-45. (in Chinese)) [17] 段永侯, 王家兵, 王亚斌, 等. 天津市地下水资源与可持续利用[J]. 水文地质工程地质, 2004, 3: 29-39. (DUAN Yong-hou, WANG Jia-bing, WANG Ya-bin, et al. Groundwater resources and its sustainable development in Tianjin[J]. Hydrogeology and Engineering Geology, 2004, 3: 29-39. (in Chinese)) [18] 王家兵, 李 平. 天津平原地面沉降条件下的深层地下水资源组成[J]. 水文地质工程地质, 2004, 5: 35-37. (WANG Jia-bing, LI Ping. Composition of groundwater resources in deep-seated aquifers under the condition of land subsidence in Tianjin Plain[J]. Hydrogeology and Engineering Geology, 2004, 5: 35-37. (in Chinese)) [19] HARBAUGH A W. MODFLOW-2005, The US geological survey modular ground-water model- the groundwater flow process[M]. Virginia: US Geological Survey, 2005. [20] 薛禹群. 地下水动力学原理[M]. 北京: 地质出版社, 1986. (XUE Yu-qun. Dynamic principle of ground water[M]. Beijing: Geological Publishing House, 1986. (in Chinese)) [21] HOFFMANN J, LEAKE S A, GALLOWAY D L. MODFLOW-2000 ground-water model-user guide to the subsidence and aquifer-system compaction package[M]. Tucson: US Geological Survey, 2003. [22] LEAKE S A. Simulation of vertical compaction in models of regional ground-water flow[C]// Proceedings of the Fourth International Symposium on Land Subsidence. IAHS Publ, 1991. [23] 李广信. 高等土力学[M]. 北京: 清华大学出版社, 2004. (LI Guang-xin. Advanced soil mechanics[M]. Beijing: Tsinghua University Press, 2004. (in Chinese)) [24] 陈仲颐, 周景星, 王洪瑾. 土力学[M]. 北京: 清华大学出版社, 1994. (CHEN Zhong-yi, ZHOU Jing-xing, WANG Hong-jin. Soil mechanics[M]. Beijing: Tsinghua University Press, 1994. (in Chinese)) [25] 郑 刚, 刘庆晨, 邓 旭. 基坑开挖对下卧运营地铁隧道影响的数值分析与变形控制研究[J]. 岩土力学, 2013, 34(5): 1459-1468. (ZHENG Gang, LIU Qing-chen, DENG Xu. Numerical analysis of effect of excavation on underlying existing metro tunnel and deformation control[J]. Rock and Soil Mechanics, 2013, 34(5): 1459-1468 (in Chinese)) [26] 郑 刚, 颜志雄, 雷华阳, 等. 天津市区第一海相层粉质黏土卸荷变形特性的试验研究[J]. 岩土力学, 2008, 29(5): 1237-1242. (ZHENG Gang, YAN Zhi-xiong, LEI Hua-yang, et al. Experimental studies on unloading deformation properties of silty clay of first marine layer in Tianjin urban area[J]. Rock and Soil Mechanics, 2008, 29(5): 1237-1242. (in Chinese)) [27] TRLAND J B B. Ninth laurits Bjerrum memorial lectural:“small is beautiful”-the stiffness of soils at small strains[J]. Canadian Geotechnical Journal, 1989, 26(4): 499-516. [28] 张瑛颖. 杭州地区粉砂土中基坑降水面的数值模拟[D]. 杭州: 浙江大学, 2006. (ZHANG Ying-ying. Numeric simulation of foundation pit dewatering surface in silty sand in Hangzhou[D]. Hangzhou: Zhejiang University, 2006. (in Chinese)) [29] 郑 刚, 曾超峰. 基坑开挖前潜水降水引起的地下连续墙侧移研究[J]. 岩土工程学报, 2013, 35(12): 2153-2163. (ZHENG Gang, ZENG Chao-feng. Study of lateral displacement of diaphragm wall by dewatering of phreatic water before excavation[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2153-2163. (in Chinese)) [30] 姚天强, 石振华, 曹惠宾, 等. 基坑降水手册[M]. 北京: 中国建筑工业出版社, 2006. (YAO Tian-qiang, SHI Zhen-hua, CAO Hui-bin, et al. Handbook of the dewatering of foundation pit[M]. Beijing: China Architecture and Building Press, 2006. (in Chinese)) 第四届全国环境岩土与土工材料研讨会(一号通知) 2014年11月7日~9日,重庆大学 人类的生存与发展和环境有着密切的关系,自然环境给人类带来了地震、洪灾和海啸的考验。同时,人类的生产与工程活动,尤其是城市的基础设施的快速建设,又造成了更多的环境公害,如抽取地下水引起地面沉降;采矿造成采空区坍塌;隧道开挖可能引起临近建(构)筑物倾斜、基础开裂以及地下管线的爆裂;排放工业垃圾、城市生活垃圾污染环境等。这些问题在一定程度上干扰了生存环境,对生态平衡产生了负面效应。人类的生存、城市的发展都必须以环境的健康为前提,环境问题的治理与预防向岩土工程师发出了新的挑战。 继2002年在杭州、2008年在长沙和2011年在上海召开第一届、第二届和第三届全国环境岩土工程与土工合成材料技术研讨会后,第四届全国环境岩土工程与土工合成材料技术研讨会将于2014年在重庆召开。本届会议提出了“可持续发展与环境岩土工程问题”的主题,以期为全国从事环境岩土工程、土工合成材料技术研究和工程实践的学者和工程人员提供一个交流平台,研讨我国在城市化建设高速发展及自然灾害下引起的各种环境岩土问题,展示环境岩土工程和土工合成材料方面的发展,以推动我国新时期国家建设中环境岩土工程与土工合成材料技术的发展及应用。我们热诚欢迎全国从事环境岩土工程与土工合成材料技术及相关研究和实践的专家、学者及工程技术人员踊跃投稿并积极参加本次会议。 会议议题:①城市建设引起的岩土工程问题;②自然灾害区域环境岩土工程问题;③城市垃圾及污染废弃物的处理技术;④污染土壤及修复技术;⑤环境岩土工程相关试验与监测技术;⑥地下工程施工中的环境问题;⑦土工合成材料在环境土工中的应用;⑧土工加筋与加固技术及其应用;⑨低碳环境与岩土工程。 会议地点:重庆大学。 会议时间:2014年11月7日~9日,其中:7日全天报到;8日~9日学术大会。 主办单位:中国岩石力学与工程学会环境岩土工程分会、中国土木工程学会土力学及岩土工程分会、中国土工合成材料工程协会、国家自然科学基金委员会工程与材料学部 承办单位:重庆大学、解放军后勤工程学院、重庆交通大学、河海大学、山地城镇建设与新技术教育部重点实验室、岩土力学与堤坝工程教育部重点实验室。 大会秘书处:联系人:钟祖良,13594058380;卢谅,18602319075;梁宁慧 13452128802,023-65120728。大会论文提交邮箱:hjyt2014@126.com 联系地址:重庆市沙坪坝北街83号重庆大学土木工程学院400045。 论文征集:论文要求尚未公开发表,论点明确,论据可靠,数据准确,文字精练,引用文献明确出处,不得侵犯他人的著作权,字数控制在6个版面以内。论文格式一律按照《岩石力学与工程学报》的格式编辑排版。学术委员会将组织专家对所提交的论文进行审查,通过审查的论文在《岩石力学与工程学报》专刊和《地下空间与工程学报》专刊及增刊上正式发表。2014年6月30日前:提交论文全文(Word格式电子版);2014年7月31日前:返回评审结果和修改意见;2014年9月30日前:提交修改后论文(附Word格式电子版)。 (大会组委会 供稿)