Numerical evaluation of degradation evolutions in three constitutive models for bonded geomaterials by distinct element method
JIANG Ming-jing1, 2, ZHANG Fu-guang1, 2, SUN Yu-gang1, 2
1. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China; 2. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China
Abstract:An evaluation of the degradation evolutions in three constitutive models for bonded geomaterials is presented by means of the distinct element method (DEM). The models examined are the disturbed state constitutive model (DSC), superloading yield surface model and Nova00092;s model. First, the micromechanics theory for bonded granulates is established according to the bonding behavior at contacts between bonded granulates. Then, a microscopic interpretation of the degradation parameter which is used to describe the degradation evolution in these models is provided based on the micromechanics theory. Finally, a series of isotropic, constant stress ratio and biaxial compression tests on the bonded geomaterials are carried out by a two-dimensional DEM code, and then the degradation evolution observed in the DEM tests is compared with the results predicted by the constitutive models. It is shown that it is available to evaluate the degradation evolution in constitutive models for bonded geomaterials by DEM. The degradation evolution assumed in the DSC model agrees well with the simulated results; as for the Nova model, the predicted results differ significantly from the simulated ones in the biaxial compression tests; while the degradation parameter in the superloading yield surface model can not well describe the degradation evolution observed under three loading conditions.
蒋明镜, 张伏光, 孙渝刚. 3种胶结岩土材料本构模型中破损规律的离散元验证[J]. 岩土工程学报, 2013, 35(5): 805-813.
JIANG Ming-jing, ZHANG Fu-guang, SUN Yu-gang. Numerical evaluation of degradation evolutions in three constitutive models for bonded geomaterials by distinct element method. Chinese J. Geot. Eng., 2013, 35(5): 805-813.
[1] LEROUEIL S, VAUGHAN P R. The general and congruent effects of structure in natural soils and weak rocks[J]. G000e9;otechnique, 1990,40(3):467-488. [2] BURLAND J B, RAMPELLO S, GEORGIANNOU V N,et al. A laboratory study of the strength of four stiff clays[J]. G000e9;otechnique, 1996,46(3):491-514. [3] 沈珠江). 土体结构性的数学模型00097;00097;21世纪土力学的核心问题[J]. (岩土工程学报), 1996,18(1):95-97. (SHEN Zhu-jiang. Mathematical model for structural soils-one of key issues on soil mechanics in the 21st century[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(1): 95-97.( (in Chinese)) [4] JIANG M J, PENG L C, ZHU H H,et al. Macro- and micro- properties of two natural marine clays in China[J]. China Ocean Engineering, 2009,23(2):329-344. [5] ISMAIL M A, JOER H A, SIM W H,et al. Effect of cement type on shear behavior of cemented calcareous soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002,128(6):520-529. [6] WANG Y H, LEUNG S C. A particulate scale investigation of cemented sand behaviour[J]. Canadian Geotechnical Journal, 2008,45(1):29-44. [7] DESAI C S, TOTH J. Disturbed state constitutive modelling based on stress-strain and nondestructive behavior[J]. International Journal of Solids and Structures, 1996,33(11):1619-1650. [8] 谢定义),(齐吉琳),(朱元林). 土的结构性参数及其与变形-强度的关系[J]. (水利学报), 1999(10):1-6. (XIE Ding-yi, QI Ji-lin, ZHU Yuan-lin. Soil structure parameter and its relations to deformation and strength[J]. Journal of Hydraulic, 1999(10): 1-6.( (in Chinese)) [9] ASAOKA A, NAKANO M, NODA T. Superloading yield surface concept for highly structured soil behavior[J]. Soils and Foundations, 2000,40(2):99-110. [10] NOVA R, CASTELLANZA R, TAMAGNINI C. A constitutive model for bonded geomaterials subject to mechanical and/or chemical degradation[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2003,27(9):705-732. [11] BAUDET B, STALLEBRASS S. A constitutive model for structured clays[J]. G000e9;otechnique, 2004,54(4):269-278. [12] YAN W M, LI X S. A model for natural soil with bonds[J]. G000e9;otechnique, 2011,61(2):95-106. [13] NEMAT-NASSER S, OKADA N. Radiographic and microscopic observation of shear bands in granular materials[J]. G000e9;otechnique, 2001,51(9):753-765. [14] WHITE D J, TAKE W A, BOLTON M D. Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry[J]. G000e9;otechnique, 2003,53(7):619-631. [15] CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. G000e9;otechnique, 1979,29(1):47-65. [16] THORNTON C. Numerical simulation of deviatoric shear deformation of granular media[J]. G000e9;otechnique, 2000,50(1):43-53. [17] JIANG M J, YU H S, HARRIS D. A novel discrete model for granular material incorporating rolling resistance[J]. Computers and Geotechnics, 2005,32(5):340-357. [18] DELENNE J Y, YOUSSOUFI M S E, CHERBLANC F,et al. Mechanical behaviours and failure of cohesive granular materials[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2004,28(15):1577-1594. [19] UTILI S, NOVA R. DEM analysis of bonded granular geomaterials[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008,32(17):1997-2031. [20] JIANG M J, YAN H B, ZHU H H,et al. Modeling shear behaviour and strain localization in cemented sands by two-dimensional distinct element method analyses[J]. Computers and Geotechnics, 2011,38,(1):14-29. [21] 蒋明镜),(孙渝刚),(李立青). 复杂应力条件下两种胶结颗粒微观力学模型试验研究[J]. (岩土工程学报), 2011,33(3):354-360. (JIANG Ming-jing, SUN Yu-gang, LI Li-qing. Experimental study on micro-mechanical model for two different bonded granules under complex stress conditions[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(3): 354-360.( (in Chinese)) [22] 蒋明镜),肖 俞,(孙渝刚),等. 水泥胶结颗粒的微观力学模型试验[J]. (岩土力学), 2012,33(5):1293-1299. (JIANG Ming-jing, XIAO Yu, SUN Yu-gang, et al. Experimental investigation on a micro-mechanical model of cement-bonded particles[J]. Rock and Soil Mechanics,2012,33(5): 1293-1299. (in Chinese) [23] 蒋明镜),(周雅萍),陈 贺. 不同胶结厚度粒间胶结微观模型参数试验研究[J]. (岩土力学), 2013,34(5):1264-1273. (JIANG Ming-jing, ZHOU Ya-ping, CHEN He. Experimental analyzes of effect of different bond thickness on parameters in micro-mechanical model of bonded granules[J]. Rock and Soil Mechanics,2013,34(5): 1264-1273. (in Chinese) [24] JIANG M J, YU H S, LEROUEIL S. A simple and efficient approach to capturing bonding effect in natural sands by discrete element method[J]. International Journal for Numerical Methods in Engineering, 2007,69(6):1158-1193. [25] CHRISTOFFERSEN J, MEHRABADI M M, NEMAT- NASSER S. A micromechanical description of granular material behavior[J]. Journal of Applied Mechanics, 1981,48(2):339-344. [26] KRUYT N P, ROTHENBURG L. Micromechanical Definition of the Strain tensor for granular materials[J]. Journal of Applied Mechanics, 1996,63(3):706-711. [27] BAGI K. Stress and strain in granular assemblies[J]. Mechanics of Materials, 1996,22(3):165-177. [28] LI X, YU H S, LI X S. Macro-micro relations in granular mechanics[J]. International Journal of Solids and Structures, 2009,46:4331-4341. [29] JIANG M J, YU H S, HARRIS D. Bond rolling resistance and its effect on yielding of bonded granulates by DEM analyses[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006,30(8):723-761. [30] JIANG M J, KONRAD J M, LEROUEIL S. An efficient technique for generating homogeneous specimens for DEM studies[J]. Computers and Geotechnics, 2003,30(7):579-597.