Abstract:Different approaches of mechanical modeling accounting for the microstructure of soils are used to develop stress-strain models for granular materials. Three typical approaches are classified: macro model with fabric tensor of microstructure, distinct element or particle flow method, and micro-plane or micro-contact analytical method. The review for the development of above approaches is first presented. Their advantages and deficiencies are discussed. It can be concluded that at the current stage, the micromechanics-based analytical modeling method can well consider the microstructure of soils and be applied in engineering practice. Therefore, this approach is presented together with the researches done during last several years by author and his related research groups for modeling the behaviors of sand and clay. Some new developments of the modeling of strain-rate dependency of clay and mechanical behaviors of coarse-fine grain mixture are finally presented.
尹振宇. 土体微观力学解析模型:进展及发展[J]. 岩土工程学报, 2013, 35(6): 993-1009.
YIN Zhen-yu. Micromechanics-based analytical model for soils: review and development. Chinese J. Geot. Eng., 2013, 35(6): 993-1009.
[1] BATDORF S B, BUDIANSKI B. A mathematical theory of plasticity based on concept of slip[R]. NACA Tech Note 1871, 1949. [2] 白武明),(傅冰骏) 陈宗基论文选[M]. 福州: 福建科学技术出版社, 1994年. (BAI Wu-ming, FU Bing-jun. Selected papers of TANG Tjongkie[M].Fuzhou:Fujian Science and Technology Press,1994. (in Chinese) [3] CUNDALL P A. A computer model for simulating progressive large scale movements in blocky rock systems[C]// Proceedings of the Symposium of the International Society for Rock Mechanics. Nancy, 1971:2-8. [4] 刘勇军),(朱岳明),(丰土根),等. 随机土体结构模型理论及应用[J]. (岩土工程学报), 2001,23(3):354-357. (LIU Yong-jun, ZHU Yue-ming, FENG Tu-gen, et al. Study on random soil frame model and its application[J]. Chinese Journal of Geotechnical Engineering,2001,23(3): 354-357. (in Chinese) [5] 张洪武). 微观接触颗粒岩土非线性力学分析模型[J]. (岩土工程学报), 2002,24(1):12-15. (ZHANG Hong-wu. A non-linear mechanical model for analysis of granular contact geomaterials[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(1): 12-15.( (in Chinese)) [6] 刘元高),(周维垣),(赵吉东),等. 裂隙岩体损伤局部化破坏分岔模型及其应用[J]. (力学学报), 2003,35(4):411-417. (LIU Yuan-gao, ZHOU Wei-heng, ZHAO Ji-dong, et al. Discontinuous bifurcation model of damage localization for jointed rocks and its application[J]. Acta Mechanica Sinica,2003,35(4): 411-417. (in Chinese) [7] 苏 栋. 一种适用于各向异性土体的破坏准则[J]. (岩土力学), 2010,31(6):1681-1686. (SU Dong. A failure criterion for anisotropic soils[J]. Rock and Soil Mechanics,2010,31(6): 1681-1686. (in Chinese) [8] LI X S, DAFALIAS Y F. Constitutive modeling of inherently anisotropic sand behavior[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2002, 128:868-880. [9] WAN R, GUO P. Stress dilatancy and fabric dependencies on sand behavior[J]. Journal of Engineering Mechanics, ASCE,2004, 130(6):635-645. [10] CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979,29:47-65. [11] 周 健,池 永. 土的工程力学性质的颗粒流模拟[J]. (固体力学学报), 2004,25(4):377-382. (ZHOU Jian, CHI Yong. Simulating soil properties by particle flow code[J]. Acta Mechanica Solida Sinica,2004,25(4): 377-382. (in Chinese) [12] JIANG M J, YU H-S, HARRIS D. A novel discrete model for granular material incorporating rolling resistance[J]. Computers and Geotechnics, 2005,32(5):340-357. [13] 高彦斌),(王江锋),(叶观宝),等. 黏性土各向异性特性的PFC数值模拟[J]. (工程地质学报), 2009,17(5):638-642. (GAO Yan-bin, WANG Jiang-feng, YE Guan-bao, et al. PFC numerical simulation on anisotropic properties of cohesive soil[J]. Journal of Engineering Geology,2009,17(5): 638-642. (in Chinese) [14] 王 涛,吕 庆,李 杨,等. 颗粒离散元方法中接触模型的开发[J]. (岩石力学与工程学报), 2009,28(增刊2):4041-4045. (WANG Tao, LU Qing, LI Yang, et al. Development of contact model in particle discrete element method[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(S2): 4041-4045. (in Chinese) [15] WALTON O R. Particle dynamic modeling of geological rnaterials[R]. Lawrence Livermore Mational Lab Report UCRL-52915, 1980. [16] CAMPBELL C S, BRENNEN C E. Computer simulation of granular shear flows[J]. Journal of Fluid Mechanics, 1985,151:167-188. [17] ODA M, WASHITA K. Mechanics of granular materiais, An introduction[M]. Rotterdam: Balkema A A, 1999:147-223. [18] 王竹溪) 统计物理学导论[M].北京:高等教育出版社,1965. (WANG Zhu-xi. Statistical physicsan introductory course[M] Beijing: Higher Education Press,1965. (in Chinese)) [19] 施 斌,(王宝军),(宁文务). 各向异性黏性土蠕变的微观力学模型[J]. (岩土工程学报), 1997,19(3):7-13. (SHI Bin, WANG Bao-jun, NING Wen-wu. Microplane creep model for anisotropic clay[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(3): 7-13.( (in Chinese)) [20] 陈 新,杨 强. 基于微面有效应力矢量的各向异性屈服准则[J]. (力学学报), 2006,38(5):692-696. (CHEN Xin, YANG Qiang. Anisotropic yield criterion based on microplane effective stress vector[J]. Chinese Journal of Theoretical and Applied Mechanics,2006,38(5): 692-696. (in Chinese) [21] 周 伟,胡 颖,(闫生存). 高堆石坝流变机理的组构理论分析方法[J]. (岩土工程学报), 2007,29(8):1274-1278. (ZHOU Wei, HU Ying, YAN Sheng-cun. Fabric theory on creep deformation mechanism for high rockfill dams[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(8): 1274-1278.( (in Chinese)) [22] 李建红),(沈珠江). 结构性土的微观破损机理研究[J]. (岩土力学), 2007,28(8):1525-1550. (LI Jian-hong, SHEN Zhu-jiang. Study on mechanism of micro-failure of structured soils[J]. Rock and Soil Mechanics, 2007, 28(8): 1525-1550.( (in Chinese)) [23] CALLADINE C R. Microstructural view of the mechanical properties of saturated clay[J]. Géotechnique, 1971,21:391-415. [24] PANDE G N,SHARMA K G Multi-laminate model of claysa numerical evaluation of the influence of rotation principal stress axis[C]// Proceedings of Symposium on Implementation of Computer Procedures and Stress-Strain Laws in Geotechnical Engineering, Chicago. Durham, NC: Acorn Press, 1982: 575-590. [25] BAZANT Z P, KIM J-K. Creep of anisotropic clay: microplane model[J]. Journal of Geotechnical Engineering, ASCE,1986, 112:458-475. [26] CHANG C S, LIAO C. Constitutive relations for particulate medium with the effect of particle rotation[J]. International Journal of Solids and Structures, 1990,26:437-453. [27] CHANG C S, GAO J. Second-gradient constitutive theory for granular material with random packing structure[J]. International Journal of Solids and Structures, 1995,32(16):2279-2293. [28] LIAO C L, CHANG T P, YOUNG D,et al. Stress-strain relationship for granular fit[J]. International Journal of Solids and Structures, 1997,34(31/32):4087-4100. [29] CHANG C S, HICHER P Y. An elastic-plastic model for granular materials with microstructural consideration[J]. International Journal of Solids and Structures, 2005,42:4258-4277. [30] HICHER P Y, CHANG C S. Evaluation of two homogenization techniques for modeling the elastic behavior of granular materials[J]. Journal of Engineering Mechanics, ASCE,2005, 131(11):1184-1194. [31] CHANG C S, YIN Z-Y. Micromechanical modelling for inherent anisotropy in granular materials[J]. Journal of Engineering Mechanics, ASCE,2010, 136(7):830-839. [32] CHANG C S, YIN Z-Y. Modeling stress-dilatancy for sand under compression and extension loading conditions[J]. Journal of Engineering Mechanics, ASCE,2010, 136(6):777-786. [33] YIN Z-Y,CHANG C S Stress-dilatancy behavior for sand under loading and unloading conditions[J]. International Journal for Numerical and Analytical Methods in Geomechanics, in press.DOI:10.1002/nag.1125. [34] YIN Z-Y, CHANG C S, HICHER P Y. Micromechanical modelling for effect of inherent anisotropy on cyclic behaviour of sand[J]. International Journal of Solids and Structures, 2010,47(14/15):1933-1951. [35] HICHER P Y, CHANG C S. A microstructural elastoplastic model for unsaturated granular materials[J]. International Journal of Solids and Structures, 2007,44(7/8):2304-2323. [36] HICHER P Y, CHANG C S, DANO C. Multi-scale modeling of grouted sand behavior[J]. International Journal of Solids and Structures, 2008,45(16):4362-4374. [37] CHANG C S, HICHER P Y. Model for granular materials with surface energy forces[J]. Journal of Aerospace Engineering, ASCE,2009, 22(1):43-52. [38] CHANG C S, YIN Z-Y. Micromechanical modeling for behavior of silty sand with influence of fine content[J]. International Journal of Solids and Structures, 2011,48(19):2655-2667. [39] 施 斌,(刘志彬),(姜洪涛). 土体结构系统层次划分及其意义[J]. (工程地质学报), 2007,15(2):145-153. (SHI Bin, LIU Zhi-bin, JIANG Hong-tao. Hierarchical division of soil mass structural system and its engineeing significance[J]. Journal of Engineering Geology, 2007, 15(2): 145-153.( (in Chinese)) [40] 施 斌,(刘志彬),(姜洪涛). 论土体结构各层次的功能及其相互关系[J]. (工程地质学报), 2007,15(5):577-584. (SHI Bin, LIU Zhi-bin, JIANG Hong-tao. On the functions of seven scale-levels of soil mass structures and their inter- relationship[J]. Journal of Engineering Geology, 2007, 15(5): 577-584.( (in Chinese)) [41] YIN Z-Y, CHANG C S. Microstructural modelling of stress-dependent behaviour of clay[J]. International Journal of Solids and Structures, 2009,46(6):1373-1388. [42] YIN Z-Y, CHANG C S, HICHER P Y,et al. Micromechanical analysis of kinematic hardening in natural clay[J]. International Journal of Plasticity, 2009,25(8):1413-1435. [43] YIN Z-Y, CHANG C S. Non-uniqueness of critical state line in compression and extension conditions[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2009,33:1315-1338. [44] CHANG C S, HICHER P Y, YIN Z-Y,et al. An elasto-plastic model for clay with microstructural consideration[J]. Journal of Engineering Mechanics, ASCE,2009, 135(9):917-931. [45] YIN Z-Y, XU Q, CHANG C S. Modeling cyclic behavior of clay by micromechanical approach[J]. Journal of Engineering Mechanics, ASCE,DOI:10.1061/(ASCE)EM.1943-7889.0000516DOI:10.1061/(ASCE)EM.1943-7889.0000516 [46] 尹振宇). 天然软黏土的弹黏塑性本构模型:进展及发展[J]. (岩土工程学报), 2011,33(9):1357-1369. (YIN Zhen-yu. Elastic viscoplastic models for natural soft clay: review and development[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(9): 1357-1369.( (in Chinese)) [47] YIN Z-Y,HICHER P Y Identifying parameters controlling soil delayed behaviour from laboratory and in situ pressuremeter testing[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2008, 32(12): 1515-1535. [48] YIN Z-Y, KARSTUNEN M, HICHER P Y. Evaluation of the influence of elasto-viscoplastic scaling functions on modelling time-dependent behaviour of natural clays[J]. Soils and Foundations, 2010,50(2):203-214. [49] KARSTUNEN M, YIN Z-Y. Modelling time-dependent behaviour of Murro test embankment[J]. Géotechnique, 2010,60(10):735-749. [50] YIN Z-Y, KARSTUNEN M. Modelling strain-rate- dependency of natural soft clays combined with anisotropy and destructuration[J]. Acta Mechanica Solida Sinica, 2011,24(3):216-230. [51] YIN Z-Y, CHANG C S, HICHER P Y,et al. Microstructural modeling of rate-dependent behavior of soft soil[C]// Proceeding of 12th IACMAG, Goa. 2008: 862-868. [52] YIN Z-Y, HATTAB M, HICHER P Y. Multiscale modeling of a sensitive marine clay[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2011,35(15):1682-1702. [53] YIN Z-Y, CHANG C S, HICHER P Y,et al. Micromechanical analysis for the behavior of stiff clay[J]. Acta Mechanica Sinica, 2011,27(6):1013-1022. [54] YIN Z-Y, CHANG C S, KARSTUNEN M,et al. An anisotropic elastic viscoplastic model for soft soils[J]. International Journal of Solids and Structures, 2010,47(5):665-677. [55] YIN Z-Y, KARSTUNEN M, CHANG C S,et al. Modeling time-dependent behavior of soft sensitive clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2011, 137(11):1103-1113. [56] YIN Z-Y, KARSTUNEN M, WANG J H,et al. Influence of features of natural soft clay on the behavior of embankment[J]. Journal of Central South University of Technology, 2011,18(5):1667-1676. [57] YIN Z-Y, WANG J H. A one-dimensional strain-rate based model for soft structured clays[J]. Science in China Series E, 2012,55(1):90-100. [58] YIN J H, ZHU J G, GRAHAM J. A new elastic viscoplastic model for time-dependent behaviour of normally and overconsolidated clays: theory and verification[J]. Canadian Geotechnical Journal, 2002,39(1):157-173. [59] CHANG C S, YIN Z-Y, HICHER P Y. Micromechanical analysis for inter-particle and assembly instability of sand[J]. ASCE Journal of Engineering Mechanics, 2011,137(3):155-168. [60] THEVANAYAGAM S, SHENTHAN T, MOHAN S,et al. Undrained fragility of clean sands, silty sands and sandy silts[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2002, 128(10):849-859.