Abstract:The water inflow into the deposition holes and tunnels in a repository will mainly take place through fractures in the rock and will lead to that the buffer and backfill will be wetted and eroded. If the counter pressure and strength of the buffer or backfill are insufficiently high, piping erosion will take place. An erosion model to estimate the erosion mass (ms) of bentonite buffer in saline solution for a certain water inflow rate during a certain time based on the fractal model for bentonite colloids is proposed as , in terms of a power law, Vw is the accumulated volume of water flow. The exponent parameter (α) is related to the fractal dimension (D) of bentonite colloids as . The relationship between the erosion mass (ms) and the accumulated volume of water flow (Vw) is verified by the experiments of MX-80 bentonite piping erosion in NaCl solutions by Börgesson et al and Suzuki et al. The fractal dimension (D) of bentonite colloids is calculated according to the small-angle X-ray scattering (SAXS) of MX-80 bentonite by Svensson & Hansen (2013).
徐永福. 基于凝胶分形模型膨润土侵蚀质量的计算方法[J]. 岩土工程学报, 2020, 42(4): 731-736.
XU Yong-fu. Calculation of erosion mass of bentonite based on fractal model for colloids. Chinese J. Geot. Eng., 2020, 42(4): 731-736.
[1] XU Y F, JIANG H, CHU F F, et al.Fractal model for surface erosion of cohesive sediments[J]. Fractals, 2014, 22(3): 1440006. [2] XU Y F.Peak shear strength of compacted GMZ bentonites in saline solution[J]. Eng Geol, 2019, 251: 93-99. [3] 徐永福, 孙德安, 董平. 膨润土及其与砂混合物的膨胀试验[J]. 岩石力学与工程学报, 2003, 22(3): 451-451. (XU Yong-fu, SUN De-an, DONG Ping.Swelling tests on bentonite and sand-bentonite mixture[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(3): 451-451. (in Chinese)) [4] 叶为民, 黄伟, 陈宝, 等. 双电层理论与高庙子膨润土的体变特征[J]. 岩土力学, 2009, 30(7): 1899-1904. (YE Wei-min, HUANG Wei, CHEN Bao, et al.Diffuse double layer theory and volume change behavior of densely compacted Gaomiaozi bentonite[J]. Rock and Soil Mechanics, 2009, 30(7): 1899-1904. (in Chinese)) [5] 秦冰, 陈正汉, 刘月妙, 等. 高庙子膨润土的胀缩变形特性及其影响因素[J]. 岩土工程学报, 2008, 30(7): 1005-1010. (QIN Bing, CHEN Zheng-han, LIU Yue-miao, et al.Swelling-shrinkage behaviour of Gaomiaozi bentonite[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(7): 1005-1010. (in Chinese)) [6] 孙德安, 张龙. 盐溶液饱和高庙子膨润土膨胀特性及预测[J]. 岩土力学, 2013, 34(10): 2790-2795. (SUN De-an, ZHANG Long.Swelling characteristics of Gaomiaozi bentonite saturated by salt solution and their prediction[J]. Rock and Soil Mechanics, 2013, 34(10): 2790-2795. (in Chinese)) [7] 张虎元, 贾灵艳, 周浪. 高效废物处置库的混合型缓冲回填材料压缩特性研究[J]. 岩土力学, 2013, 34(6): 1546-1552. (ZHANG Hu-yuan, JIA Ling-yan, ZHOU Lang.Compression behaviors of compacted bentonite-sand mixtures as buffer material for HLW disposal[J]. Rock and Soil Mechanics, 2013, 34(6): 1546-1552. (in Chinese)) [8] BAIK M H, CHO W J, HAHN P S.Erosion of bentonite particles at the interface of a compacted bentonite and a fractured granite[J]. Eng Geol, 2007, 91: 229-239. [9] XU Y F.Approach to the erosion threshold of cohesive sediments[J]. Ocean Engineering, 2019, 172: 183-190. [10] XU Y F, GAO Z R, CHU F F, et al.Fractal model for erosion mass of bentonite colloids[J]. Environ Earth Sci, 2016, 75: 1330. [11] XU Y F, LI X Y.Fractal approach to erosion threshold of bentonites[J]. Fractals, 2018, 26(2): 1840012. [12] BIRGERSSON M, BÖRGESSON L, HEDSTRÖM K, et al. Bentinite Erosion[R]. Stockholm, SKB TR-09-34, Swedish Nuclear Fuel and Waste Management Co., 2009. [13] SKB. Detailed Program for Research and Development 1999-2004[R]. Stockholm: Swedish Nuclear Fuel and Waste Management Co., 1998. [14] POSIVA Oy.TKS-2009 Nuclear Waste Management at Olkiluoto and Loviisa Power Plants: Review of Current Status and Future Plans for 2010-2012[R]. 2010. [15] 徐永福. 高放废物地质处置库中膨润土的侵蚀机理和模型研究综述[J]. 地球科学进展, 2016, 32(10): 1050-1061. (XU Yong-fu.Mechanisms and models for bentonite erosion used for geologic disposal of high level radioactive waste: a review[J]. Advances in Earth Science, 2017, 32(10): 1050-1061. (in Chinese)) [16] BÖRGESSON L, SANDÉN T. Piping and Erosion in Buffer and Backfill Materials[R]. Clay Technology AB, SKB R-06-80, Svensk Kärnbränslehantering AB, 2006. [17] JANSSON M.Laboratory Studies of Bentonite Erosion[R]. Report, Nuclear Chemistry, Royal Institute of Technology, KTH, Stockholm, 2009. [18] SANE P, LAURILA T, OLIN M, et al.Current Status of Mechanical Erosion Studies of Bentonite Buffer[R]. POSIVA 2012-45, 2012. [19] SUZUKI K, ASANO H, YAGAG R.Experimental investigations of piping phenomena in bentonite-based buffer materials for an HLW repository[J]. Clay Miner, 2013, 48: 363-382. [20] XU Y F, JIANG H, CHU F F, et al.Fractal model for surface erosion of cohesive sediments[J]. Fractals, 2014, 22(3): 1440006. [21] SCHAEFER D W, MARTIN J E, WILTZIUS P, et al.Fractal geometry of colloidal aggregates[J]. Phys Rev Lett, 1984, 52(26): 2371-2375. [22] FRANKS G V, ZHOU Y, YAN Y-D, et al.Effect of aggregate size on sediment bed rheological properties[J]. Phys Chem Chem Phys, 2004, 6: 4490-4498. [23] XU Y F, XIA X H.Fractal model for virgin compression of pure clays[J]. Mech Res Commun, 2006, 33: 206-216. [24] AUBERT C, CANNELL D S.Restructuring of colloidal silica aggregates[J]. Phys Rev Lett, 1986, 56: 738. [25] SINKÓ K, TORMA V, KOVÁCS A. SAXS investigation of porous nanostructures[J]. J of Non-Crystalline Solids, 2008, 354: 5466-5474. [26] WOIGNIER T, PHALIPPOU J, VACHER R, et al.Different kinds of fractal structures in silica aerogels[J]. J of Non-Crystalline Solids, 1990, 121: 198-201. [27] COURTENS E, VACHER R.Porous silica[M]// THORPE M F, MITKOVA M I. Amorphous Insulators and Semiconductors, NATO ASI Series, 3 High Technology, Kluwer Academic Publishers, 1997: 255-288. [28] ZHOU Y, FRANKS G V.Flocculation mechanism induced by cationic polymers investigated by light scattering[J]. Langmuir, 2006, 22: 6775-6786. [29] XI Y, CHEN J J, XU Y F, et al.Yield stress of fractal aggregates[J]. Fractals, 2015, 23(3): 1550028. [30] MEAKIN P.Fractal aggregates[J]. Advances in Colloid and Interface Sci, 1988, 28: 249-331. [31] KRONE R B.A Study of Rheologic Properties of Estuarial Sediments[R]. U.S. Army Corps of Engineers Committee on Tidal Hydraulics Technical Bulletin No. 7, Vicksburg, MS, 1963. [32] SVENSSON P D, HANSEN S.Combined salt and temperature impact on monmorillonite hydration[J]. Clays and Clay Minerals, 2013, 61(4): 328-341. [33] KLIMPEL R C, HOGG R.Evaluation of floc structures[J]. Colloids and Surf, 1991, 55: 279-288. [34] HUANG H.Porosity-size relationship of drilling mud flocs: fractal structure[J]. Clays and Clay Minerals, 1993, 41: 373-379. [35] SCHAEFER D W, MARTIN J E, WILTZIUS P, et al.Fractal geometry of colloidal aggregates[J]. Phys Rev Lett, 1984, 52: 2371-2374.