Mechanical tests on bearing capacity of steel pipe-frozen soil composite structure applied in Gongbei Tunnel
HU Xiang-dong1, 2, DENG Sheng-jun1, 2, WANG Yang3
1. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China; 2. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China; 3. Suzhou Electric Power Design Institute Co., Ltd., Suzhou 215400, China
Abstract:The freezing-sealing pipe roof (FSPR) as an innovative pre-supporting method in tunnel engineering has been applied to Gongbei Tunnel of Hong Kong-Zhuhai-Macau Bridge, which is the first application in the world. The definition of FSPR is that large-diameter steel pipes are laid out in a circle around the cross section of the tunnel in advance, and then the artificial ground freezing method is adopted to the freeze soil between steel pipes to form waterproof curtain. To study the bearing capacities of the steel pipe-frozen soil composite structure and the appropriate temperature of frozen soil between steel pipes in the actual project, the mechanical tests on steel pipe-frozen soil composite structure are conducted by using a uniaxial compression testing system of frozen soil with four different temperatures. The criterion for the ultimate deformation state of steel pipe-frozen soil composite structure under waterproofing is proposed. The bearing and deformation capacities of the composite structure under waterproofing are judged from the load-displacement curves in the tests. The results show that at relatively higher temperature, the deformation capacities of frozen soil following the steel pipes are better, but the bearing and deformation capacities of composite structure are relatively poor due to the low strength of frozen soil. Similarly, at relatively lower temperature, the results are relatively poor due to the poor plasticity of the frozen soil. When the temperature is moderate, the bearing and deformation capacities of composite structure are relatively strong, that is, the capability to withstand deformation and to bear the ultimate load is the largest. The ideal temperature of the frozen soil between steel pipes is about -10℃ and it has been adopted in the actual construction of Gongbei Tunnel, which is of reference value for similar construction.
胡向东,邓声君,汪洋. 拱北隧道“钢管–冻土”复合结构承载力试验研究[J]. 岩土工程学报, 2018, 40(8): 1481-1490.
HU Xiang-dong, DENG Sheng-jun, WANG Yang. Mechanical tests on bearing capacity of steel pipe-frozen soil composite structure applied in Gongbei Tunnel. Chinese J. Geot. Eng., 2018, 40(8): 1481-1490.
[1] 何小龙, 程勇, 郭小红. 港珠澳大桥珠海连接线工程拱北隧道设计[J]. 土工基础, 2012(9): 244-248. (HE Xiao-long, CHENG Yong, GUO Xiao-hong.Gongbei Tunnel design of HongKong-Zhuhai-Macau Bridge connector project[J]. Soil Engineering and Foundation, 2012(9): 244-248. (in Chinese)) [2] 潘建立, 高海东, 史培新. 拱北隧道暗挖段管幕组合方案优化研究[J]. 现代隧道技术, 2015, 52(3): 55-62. (PAN Jian-li, GAO Hai-dong, SHI Pei-xin.A study of combined Pipe-Roof scheme optimization for the bored section of the Gongbei Tunnel[J]. Modern Tunnelling Technology, 2015, 52(3): 55-62. (in Chinese)) [3] HU X, DENG S, REN H.In situ test study on freezing scheme of freeze-sealing pipe roof applied to the Gongbei Tunnel in the Hong Kong-Zhuhai-Macau Bridge[J]. Appl Sci, 2017, 7(1): 27. [4] 周晓敏, 张国亮. “冻土+管棚”复合结构的承载性能研究及其应用分析[J]. 市政技术, 2004, 22(增刊): 341-344. (ZHOU Xiao-min, ZHANG Guo-liang.Bearing capacity research and application analysis on “frozen soil and pipe lodgepole” composite structure[J]. Municipal Engineering Technology, 2004, 22(S0): 341-344. (in Chinese)) [5] 梁洪振, 赵志福. 复合冻土结构的承载性能研究及其应用分析[C]// 矿山建设工程新进展—2006全国矿山建设学术会议文集(上册). 北京, 2006: 440-445. (LIANG Hong-zhen, ZHAO Zhi-fu.Compound frozen earth structure load bearing performance research and its applied analysis[C]// New Progress in Mine Construction Engineering: The Sessions of The National Mine Construction of Academic Essays (The First Volume). Beijing, 2006: 440-445. (in Chinese)) [6] BRUN B, HA H.Underground line U5 'unter den linden' Berlin, Germany structural and thermal fe-calculations for ground freezing design[C]// Proc Int Conf Numerical Simulation of Construction Processes in Geotechnical Eng for Urban Environment. Berlin, 2006: 225-232. [7] 鎌倉友, 阿曽利光, 浜口幸一, 等. 小口径シールドの包含による大断面拡幅工法(SR-J 工法)の開発[J]. 土木学会第60回年次学術講演会, 2005, 60(1): 165-166. (KAMAKURA T, ASO T, HAMAGUCHI K, et al.Development of tunnel expansion method (SR-J) for underground highway junction[J]. Proceedings of the 60 Annual Conference of the Japan Society of Civil Engineers. Japan, 2005, 60(1): 165-166. (in Japanese)) [8] 浜口幸一, 矢部幸男, 吉武謙二. 小口径シールド結合リングによる超大断面拡幅工法(SR-JP 工法)の開発[J].土木学会第61回年次学術講演会, 2006, 61(1): 139-140. (HAMAGUCHI K, YABE Y, YOSHITAKE K.Development of small diameter shield combined large-section widening method (SR-JP)[J]. Proceedings of the 61 Annual Conference of the Japan Society of Civil Engineers, 2006, 61(1): 139-140. (in Japanese)) [9] 夏慧民, 牛富俊. 冻结管对人工冻结构件加筋作用的试验及数值模拟[J]. 冰川冻土, 2002, 24(2): 155-159. (XIA Hui-min, NIU Fu-jun.Experimental study and numerical simulation of the reinforcement of embedded freezing pipes on artificial frozen components[J]. Journal of Glaciology and Geocryology, 2002, 24(2): 155-159. (in Chinese)) [10] 上田保司, 生頼孝博, 鋼管補強による凍土梁の曲げ強度特性の改良[J]. 土木学会論文報告集, 2001, 12: 81-90. (UEDA Y, OHRAI T.Improvement of bending strength of frozen soil beam reinforced by steel pipe[J]. Proceedings of the Japan Society of Civil Engineers, 2001, 12: 81-90. (in Japanese)) [11] 森内浩史, 上田保司, 生頼孝博. 鋼管変形に対する凍土の追随性把握実験[J]. 土木学会第58回年次学術講演会, 2003, 58(4): 753-754. (MORIUCHI K, UEDA Y, OHRAI T.Study on the fitting ability of frozen soil and steel pipes[J]. Proceedings of the 58 Annual Conference of the Japan Society of Civil Engineers, 2003, 58(4): 753-754. (in Japanese)) [12] 杨维好, 黄家会. 冻结管受力分析与试验研究[J]. 冰川冻土, 1999, 21(1): 33-38. (YANG Wei-hao, HUANG Jia-hui.Theoretical analyses and experimental research on stresses in freezing pipes[J]. Journal of Glaciology and Geocryology, 1999, 21(1): 33-38. (in Chinese)) [13] 周晓敏. 冻结管在冻结壁变形段内的受力计算[J]. 煤炭学报, 1996, 21(1): 30-34. (ZHOU Xiao-min.Stressing of freeze pipe in the deformed section of ice wall[J]. Journal of China Coal Society, 1996, 21(1): 30-34. (in Chinese)) [14] 森内浩史, 上田保司, 生頼孝博. 鋼管間止水凍土の凍着維持に関する研究[J]. 土木学会論文集, 2008, 64(2): 294-306. (MORIUCHI K, UEDA Y, OHRAI T.Study on the zdfreeze between frozen soil and steel pipes for cutoff of water[J]. Proceedings of The Japan Society of Civil Engineers, 2008, 64(2): 294-306. (in Japanese)) [15] 隅谷大作, 上田保司, 生頼孝博. 曲線形凍土と構造物との凍着維持に関する安全性評価[J]. 第39回地盤工学研究发表会, 2004, 39(6): 1103-1104. (SUMIYA D, UEDA Y, OHRAI T.Safety evaluation of interface between frozen soil and structure[J]. Proceedings of the 39 Annual Conference of the Japan Society of Geotechnical Engineering, 2004, 39(6): 1103-1104. (in Japanese)) [16] 汪洋. 管幕冻结法钢管-冻土复合结构力学性能研究 [D]. 上海: 同济大学, 2013. (WANG Yang.Mechanical property analysis of steel pipe-frozen soil composite structure in freeze-sealing pipe roof method[D]. Shanghai: Tongji University, 2013. (in Chinese)) [17] 张鹏, 王翔宇, 曾聪, 等. 深埋曲线钢顶管受力特性现场监测试验研究[J]. 岩土工程学报, 2016, 38(10): 1842-1848. (ZHANG Peng, WANG Xiang-yu, ZENG Cong, et al.Site monitoring of mechanical characteristics of pipes during steel curved pipe jacking under large buried depth[J]. Chinese J Geot Eng, 2016, 38(10): 1842-1848. (in Chinese)) [18] 李鸿升, 朱元林, 刘增利, 等. 冻土脆性破坏统计理论及尺寸效应[J]. 自然科学进展, 1998, 8(6): 715-720. (LI Hong-sheng, ZHU Yuan-lin, LIU Zeng-li, et al.Statistical theory and size effect of brittle failure of frozen soil[J]. Advanced in Natural Science, 1998, 8(6): 715-720. (in Chinese)) [19] 沈忠言, 彭万巍, 王显耀, 等. 应变速率及温度对冻结黄土抗拉强度的影响[J]. 冰川冻土, 1995, 17(增刊): 71-75. (SHEN Zhong-yan, PENG Wan-wei, WANG Xian-yao, et al.Effect of strain rate and temperature on tensile strength of frozen loess[J]. Journal of Glaciology and Geocryology, 1995, 17(S0): 71-75.(in Chinese)) [20] ZHU Y L, ZHANG J Y, PENG W W, et al.Constitutive relation of frozen soil in uniaxial compression[C]// Proc of 6th ISGF. Beijing: South China University of Technotoge Press, 1991: 211-216.