Abstract:Great efforts have been made to determine the shear strength of coarse granular materials using both elaborate laboratory tests and empirical methods. However, the elaborate laboratory tests are difficult and time consuming to perform, and the physical meaning of empirical parameters is not obvious in the empirical methods. A simple method to determine the shear strength of coarse granular materials is proposed based on a fractal model for particle breakage. The shear strength of coarse granular materials can be seen as the friction between particle contacts, and the particle contacts can be modeled by the fractal model for particle breakage. Thus the shear strength of coarse granular materials can be easily estimated using the fractal dimension of particle-size distribution. The shear strength of coarse granular materials obtained from the proposed method is in satisfactory agreement with the experimental data of bottom ash from municipal solid waste incineration (MSWI).
徐永福. 考虑颗粒破碎影响的粗粒土的剪切强度理论[J]. 岩土工程学报, 2018, 40(7): 1171-1179.
XU Yong-fu. Theory of shear strength of granular materials based on particle breakage. Chinese J. Geot. Eng., 2018, 40(7): 1171-1179.
[1] XU Y F, DONG P, SUN D A.Tensile strength of granular materials[J]. Chinese J Rock Mech Eng, 2003, 22(6): 913-918. [2] HU W, YIN Z Y, DANO C, et al.A constitutive model for granular materials considering grain breakage[J]. Science in China Series E, 2011, 54(8): 2188-2196. [3] YIN Z Y, HICHER P Y, DANO C, et al.Modeling the mechanical behavior of very coarse granular materials[J]. Journal of Engineering Mechanics ASCE, 2017, 143(1): C401600. [4] 尹振宇, 许强, 胡伟. 考虑颗粒破碎效应的粒状材料本构研究:进展及发展[J]. 岩土工程学报, 2012, 34(12): 2170-2180. (YIN Zhen-yu, XU Qiang, HU Wei.Constitutive relations for granular materials considering particle crushing: review and development[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2170-2180. (in Chinese)) [5] VALDES J R, KOPRULU E.Characterization of fines produced by sand crushing[J]. J Geotech and Geoenvir Eng, 2007, 133(12): 1626-1630. [6] 刘映晶, 王建华, 尹振宇, 等. 考虑级配效应的粒状材料本构模拟[J]. 岩土工程学报, 2015, 37(2): 299-305. (LIU Ying-jing, WANG Jian-hua, YIN Zhen-yu, et al.Constitutive modeling for granular materials considering grading effect[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 299-305. (in Chinese)) [7] 李罡, 刘映晶, 尹振宇, 等. 粒状材料临界状态的颗粒级配效应[J]. 岩土工程学报, 2014, 36(3): 452-457. (LI Gang, LIU Ying-jing, YIN Zhen-yu, et al.Grading effect on critical state behavior of granular materials[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 452-457. (in Chinese)) [8] HARDIN BO.Crushing of soil particles[J]. J Geotech Eng, ASCE, 1985, 111(10): 1177-1192. [9] XU Y F, LIU S Y.Fractal character of grain-size distribution of expansive soils[J]. Fractals, 1999, 7(4): 359-366. [10] 徐永福, 奚悦, 冯兴波, 等. 岩石单颗粒压缩破碎的数值模拟分析[J]. 工程地质学报, 2015, 23(4): 589-596. (XU Yong-fu, XI Yue, FENG Xing-bo, et al.Simulation of rock grain breakage using PFC2D[J]. Journal of Engineering Geology, 2015, 23(4): 589-596. (in Chinese)) [11] 张季如, 胡泳, 张弼文. 石英砂砾破碎过程中粒径分布的分形行为研究[J]. 岩土工程学报, 2015, 37(5): 784-791. (ZHANG Ji-ru, HU Yong, ZHANG Bi-wen, et al.Fractal behavior of particle-size distribution during particle crushing of quartz sand and gravel[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 784-791. (in Chinese)) [12] 蔡正银, 李小梅, 关云飞, 等. 堆石料的颗粒破碎规律研究[J]. 岩土工程学报, 2016, 38(5): 923-929. (CAI Zheng-yin, LI Xiao-mei, GUAN Yun-fei, et al.Particle breakage rules of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 923-929. (in Chinese)) [13] STEACY S J, SAMMIS C G.An automaton for fractal patterns of fragmentation[J]. Nature, 1991, 360: 250-252. [14] PERFECT E.Fractal models for the fragmentation of rocks and soils: a review[J]. Eng Geol, 1997, 48: 185-198. [15] PALMER A C, SANDERSON T J O. Fractal crushing of ice and brittle solids[C]// Proc Roy Soc Lond A. 2001: 469-477. [16] XU Y F, XU J P, WANG J H.Fractal model for size effect on ice failure strength[J]. Cold Reg Sci Tech, 2004, 40(1/2): 135-144. [17] XU Y F.Explanation of sealing phenomenon based oil fractal fragmentation of granular materials[J]. Mech Res Comm, 2005, 32(2): 209-220. [18] 徐永福, 王益栋, 奚悦, 等. 岩石颗粒破碎的尺寸效应[J]. 工程地质学报, 2014, 22(6): 1023-1027. (XU Yong-fu, WANG Yi-dong, XI Yue, et al.Size effect on crushing of rock particles[J]. Journal of Engineering Geology, 2014, 22(6): 1023-1027. (in Chinese)) [19] XU Y F.Approach to the Weibull modulus based on fractal fragmentation of particles[J]. Powder Technology, 2016, 292: 99-107. [20] FROSSARD E, HU W, DANO C, et al.Rockfill shear strength evaluation: a rational method based on size effects[J]. Géotechnique, 2012, 62(5): 415-427. [21] XU Y F, FENG X B, ZHU H G.Fractal model for rockfill shear strength based on particle fragmentation[J]. Granular Matter, 2015, 17: 753-761. DOI 10.1007/s10035-015-0591-z. [22] LUAN B, ROBBINS M O.The breakdown of continuum models for mechanical contacts. Nature, 2005, 435: 929. [23] MANDELBROT B B.The fractal geometry of nature[M]. San Franciso: Freeman WH, 1982. [24] TURCOTTE D L.Fractals and fragmentation[J]. J of Geophy Res, 1986, 91: 1921-1926. [25] JAEGER J C.Failure of rocks under tensile conditions[J]. Int J Rock Min Sci, 1967, 4: 219. [26] WEIBULL W.A statistical distribution function of wide applicability[J]. J Appl Mech, 1951, 18: 293. [27] MO Y F, TURNER K T, SZLUFARSKA I.Friction laws at the nanoscale[J]. Nature, 2009, 457: 1116-1118. [28] LINCOLN B.Elastic deformation and the laws of friction[J]. Nature, 1953, 172: 169.