Expressions for deflection and internal forces on ladder square foundation plate
HUANG Mo-jia1, CHENG Hua-hu2, LI Ai-min1, LAN Zhi-wen1, ZHOU Bin-xi3
1. Institute of Engineering Mechanics, Nanchang University, Nanchang 330031, China; 2. Institute of Technology, Jiangxi Agricultural University, Nanchang 330045, China; 3. Yutong Bus Co., Ltd., Zhengzhou 450061, China
Abstract:It is very complicated to give the expressions for deflection and internal forces on ladder square foundation plates with four free boundaries because of difficulties in satifying four free boundaries, displacement continuity and smoothness at ladder transitions. Until now, the expressions of deflection and internal forces on ladder square foundation plates under vertical loads are not available. Herein, by dividing the load with bending stiffness, the concept of load stiffness ratio is put forward, and the problems of continuity and smoothness at ladder transitions are cleverly solved. By the Fourier expansions of load stiffness ratio and plate deflection, the Fourier coefficients of plate deflection of satisfying the plate differential equation and four free boundaries are determined. The expressions for deflection and internal forces on ladder square foundation plates are derived. The expressions are verified by FEM. The proposed concept of load stiffness ratio may provide a new method for solving the deflection and internal forces on ladder square foundation plates.
黄模佳, 程华虎, 李爱民, 兰志文, 周斌喜. 阶梯方形基础板挠度和内力场的求解[J]. 岩土工程学报, 2016, 38(5): 909-915.
HUANG Mo-jia, CHENG Hua-hu, LI Ai-min, LAN Zhi-wen, ZHOU Bin-xi. Expressions for deflection and internal forces on ladder square foundation plate. Chinese J. Geot. Eng., 2016, 38(5): 909-915.
[1] 成祥生. 弹性地基上的自由边矩形板[J]. 应用数学和力学, 1992, 13(10): 345-354. (CHENG Xiang-sheng. A free rectangular plate on elastic foundation[J]. Applied Mathematics and Mechanics, 1992, 13(10): 345-354. (in Chinese) ) [2] TIMOSHENKO S, WOINOWSKY-KRIEGER S. Theory of plates and shells[M]. New York: MCGRAW-Hill Book Company, 1959: 114-170. [3] WASHIZU K. Vibrational methods in elasticity y and Plasticity[M]. New York: Pergamon Press, 1982: 35-67. [4] LIU J J, FU B L. New approach for solving restricted torsion problem[J]. Chinese Journal of Mechanical Engineering, 1977, 10(3): 227-231. [5] ZHU Y B, FU B L. Further research on the bending of the cantilever plates under a concentrated load[J]. Advances in Applied Mathematics and Mechanics in China, 1991, 15(3): 253-265. [6] KEER L M, STAHL B. Eigenvalue problem of rectangular plates With mixed edge conditions[J]. Journal of Applied Mechanics, 1972, 39(6): 513-520. [7] LAURA P A A, DURAN R. A note on forced vibration of a clamped rectangular plate[J]. Journal of Sound and Vibration, 1985, 42(1): 129-135. [8] DUNALDSON B K A. New approach to the forced vibration of thin plates[J].Journal of Sound and Vibration, 1973, 30(4): 397-417. [9] 凌道盛, 陈云敏, 丁皓江. 任意基础板的有限元分析[J]. 岩土工程学报, 2000, 22(4): 450-455. (LING Dao-sheng, CHEN Yun-min, DING Hao-jiang. Finite element analysis of arbitrary plates on ground[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(4): 450-455. (in Chinese)) [10] 王春玲, 黄 义. 弹性半空间地基上四边自由矩形板的弯曲解析解[J]. 岩土工程学报, 2005, 27(12): 1402-1407. (WANG Chun-ling, HUANG Yi. Analytic solution of rectangular plates loaded with vertical force on an elastic half space[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(12): 1402-1407. (in Chinese)) [11] 李 刚, 熊益农, 尚守平. 半解析数值法分析四边自由中厚板的受力特性[J]. 湖南大学学报(自然科学版), 2007, 34(6): 19-23. (LI Gang, XIONG Yi-nong, SHANG Shou-ping. Semi-analytical numerical method for analyzing strength characteristic of the four free edge moderate thick plate[J]. Journal of Hunan University (Natural Sciences), 2007, 34(6): 19-23. (in Chinese)) [12] 钟 阳, 孙爱民, 周福霖, 等. 弹性地基上四边自由矩形薄板分析的有限积分变换法[J]. 岩土工程学报, 2006, 28(11): 2019-2022. (ZHONG Yang, SUN Ai-ming, ZHOU Fu-lin, et al. Analytic solution of rectangular plates loaded with vertical force on an elastic half space[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(11): 2019-2022. (in Chinese)) [13] 倪光乐, 李成明, 苏克之. 弹性矩形板与弹性地基共同作用的简化计算法[J]. 岩石力学与工程学报, 2000, 19(5): 659-665. (NI Guang-le, LI Cheng-ming, SU Ke-zhi. Analytic solution of rectangular plates loaded with vertical force on an elastic half space[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(5): 659-665. (in Chinese)) [14] 王春玲, 黄 义. 弹性地基板的分析简化模型[J]. 岩土力学, 2008, 29(1): 52-57. (WANG Chun-ling, HUANG Yi. Refined model for analysis of plates on elastic foundations[J]. Rock and Soil Mechanics, 2008, 29(1): 52-57. (in Chinese)) [15] 卜小明, 严宗达. 无拉力Winkler地基上自由边矩形薄板的弯曲[J]. 应用数学和力学, 1991, 12(6): 567-578. (BU Xiao-ming, YANG Zong-da. Bending problems of rectangular reissner plate with free edges laid on tensionless Winkler foundations[J]. Applied Mathematics and Mechanics, 1991, 12(6): 567-578. (in Chinese)) [16] 叶开沉, 刘人怀, 李思来, 等. 在对称线布载荷作用下的园底扁薄球壳的非线性稳定问题[J]. 兰州大学学报, 1965, 2: 10-33. (YE Kai-chen, LIU Ren-huai, LIU Si-lai, et al. Nonlinear stabilities of thin circular shallow shells under actions of axisymmetrical uniformly distributed line loads[J]. Journal of Lanzhou University, 1965, 2: 10-33. (in Chinese)) [17] 王燮山. 解阶梯式变厚度两对边简支的矩形弹性薄板弯曲问题的解析解[J]. 应用力学学报, 1995, 12(1): 126-131. (WANG Xie-shan. The analytical solutions of bending problem for stepped rectangular elastic thin plates with two opposite simple supported edges[J]. Chinese Journal of Applied Mechanics, 1995, 12(1): 126-131. (in Chinese)) [18] 徐芝纶. 弹性力学(下册)[M]. 4版. 北京: 高等教育出版社, 2006: 1-17. (XU Zhi-lun. Elasticity (part ii)[M]. 4th ed. Beijing: Higher Education Press, 2006: 1-17. (in Chinese))